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Abstract. We present four methods for recovering the epipolar geometry from
images of smooth surfaces. In the existing methods for recoveringlapige-
ometry corresponding feature points are used that cannot be fousatimim-
ages. The first method is based on finding corresponding charécteamts cre-
ated by illumination (ICPM - illumination characteristic points method). The sec-
ond method is based on correspondent tangency points created bptsifrom
epipoles to outline of smooth bodies (OTPM - outline tangent points method).
These two methods are exact and give correct results for real énbgeause
positions of the corresponding illumination characteristic points and gones

ing outline are known with small errors. But the second method is limited ei-
ther to special type of scenes or to restricted camera motion. We alsimeons
two more methods which are termed CCPM (curve characteristic point®deth
green curves are used for this method on Figures) and CTPM (cumgent
points method, red curves are used for this method on Figures), dochseg
epipolar geometry for images of smooth bodies based on a set of lemeisc
(isophoto curves) with a constant illumination intensity. The CCPM method is
based on searching correspondent points on isophoto curves witblthefltor-
relation of curvatures between these lines. The CTPM method is basedmn p
erty of the tangential to isophoto curve epipolar line to map into the tangential
to correspondent isophoto curves epipolar line. The standard metinogd&SM
(standard method, blue curves are used for this method on Figuréd)azed

on knowledge of pairs of the almost exact correspondent pointshéwrs used

for testing of these two methods. The main technical contributions of otfNCC
method are following. The first of them consists of bounding the segrabes

for epipole locations. On the face of it, this space is infinite and unbouiviled.
suggest a method to partition the infinite plane into a finite number of regions.
This partition is based on the desired accuracy and maintains propertigetia

an efficient search over the infinite plane. The second is an efficiethoehéor
finding correspondence between points of two closed isophoto curddgaing
homography, mapping between these two isophoto curves. Then thigyhaphy

is corrected for all possible epipole positions with the help of evaluatiortitmc

A finite subset of solution is chosen from the full set given by all possipipole
positions. This subset includes fundamental matrices giving local mmsrof
evaluating function close to global minimum. Epipoles of this subset lie almost
on straight line directed parallel to parallax shift. CTPM method was used to
find the best solution from this subset. Our method is applicable to any pair of
images of smooth objects taken under perspective projection modéisgaas
assumption of the constant brightness is taken for granted. The methods



been implemented and tested on pairs of real images. Unfortunatelystheda
methods give us only a finite subset of solution that usually includes gaod s
tion, but doesnt allow us to find this good solution among this subset. Exneptio
is the case of epipoles in infinity. The main reason for such result is iracygu

of assumption of constant brightness for smooth bodies. But outlindlanmd-
nation characteristic points are not influenced by this inaccuracy. Sfixshgair

of methods gives exact results.

Key Words: Level curves; Isophoto curves; Occluding contour; HomphyaEpipo-
lar geometry; Smooth surfaces.

1 Introduction

Recovering a three-dimensional shape from a sequence ahabes has many appli-
cations in areas as diverse as autonomous navigation teb@gnition and computer
graphics. Solving this problem requires appropriate carparameters and correspon-
dence between points in different images. Epipolar gegnpatys a central role in
extracting correspondence between points in differenggsaFor each point in one
image epipolar geometry determines a single line, calledpgpolar line, in the other
image on which its corresponding point is incident.

This paper presents methods for determining the epipolamgéy of a pair of
images under weak (epipoles in infinity) and full perspectivojection models. We
assume uncalibrated images of smooth surfaces. The paiagfs may be taken from
any two viewpoints distant from each other as long as theagfgahe assumption of
constant brightness which presupposes that correspopdints in the different images
have the same value of intensity. This assumption holds uhereflectance model of
the imaged surface is independent of the viewpoint. We dsuds less general cases
such as the weak perspective projection model, calibratetecas, and a setup similar
to the one suggested by [2], where the images contain a planseshomography can
be computed.

Epipolar geometry is often represented by the fundamengdtixn[3, 13, 4] The
standard method for recovering the epipolar geometry islth@omputing the funda-
mental matrix from a set of corresponding features in the images such as points
or lines (e.g., [6,14, 13,9, 16, 15]). However, for imagesmiboth surfaces which we
consider in this paper, reliable extraction of image fesdus often impossible.

The first pair of method gives exact result for real, prattioages. The first method
is based on finding corresponding characteristic pointedby illumination (ICPM).
The second method is based on correspondent tangency p@ated by tangents from
epipoles to outline of smooth bodies (OTPM). The second atetbr recovering the
epipolar geometry of smooth objects is based solely on tlectboutline (e.g., [1,
2,8]). Such method is limited to either restricted motiort@i relatively rich scene
with sufficient number of special points along the objecttinel. The second pair of
methods is general and independent of the occluding comtadithe camera motion.
However, in these methods a significantly larger space Beaust be considered, so it
can work only when the assumption of constant brightnesatisfied.



The second pair of methods offered by us termed as CCPM ant@S#er search-
ing epipolar geometry for images of smooth bodies. The CCRithod is based on
searching correspondent points on isophoto curves withel of correlation of cur-
vatures between these lines. The CTPM method is based oerpya the tangential to
isophoto curve epipolar line to map into the tangential tormespondent epipolar line
of isophoto curves. The standard method termed SM and baskdosvledge of pairs
of the almost exact correspondent points was utilized ftinig these two methods.

The main technical contributions of our method are follagvifhe first one is an ef-
ficient method for finding correspondence between pointwotdosed isophoto curves
and finding homography, mapping between these two isophoties. Then this ho-
mography is corrected for all possible epipole positionthwhe help of the evaluation
function. A finite subset of solution is chosen from the fét given by all possible
epipole position. This subset includes fundamental megrgiving local minimums of
evaluating function close to the global minimum. Epipoléshés subset lie almost on
straight line directed parallel to parallax shift. CTPM had was used to find the best
solution from this subset.

The next contribution consists of bounding the search sfmoepipole locations.
On the face of it, this space is infinite and unbounded. We estgg method to par-
tition the infinite plane into a finite number of regions (ségufe 1). The suggested
plane partition maintains desired resolution of the systehen possible. In addition, it
maintains a probabilistic equal hit measure of epipoladirRoughly speaking, proba-
bilistically the size of each subset of epipolar lines wegrssd for each region is equal.
This property contributes to the efficiency of the search

Fig. 1. A schematic drawing of the infinite plane partitioned into regions.

The rest of the paper is organized as follows. We begin byepitexy the first pair
of method for recovering the epipolar geometry from a painméalibrated images of
smooth surfaces (Section 2). The next step is the seconapaiethods (Section 3).
The method is presented for images taken under the pergp@ctijection model. The
implementation of these method and the results of runnimgespondent algorithms
on real images are presented in Subsection 3.4. Finally wensuize and conclude in
Section 4.
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2 The first pair of exact methods.

2.1 Method of characteristic points of illumination intensity for smooth bodies
(ICPM)

For searching epipolar geometry corresponding points anitmages are used. The
assumption of constant brightness was used. This meangluhgihation intensity of
the corresponding points on the both images is identicallallis the corresponding
points are some corner points of bodies. As on smooth bodis goints are lacking,
it is usually assumed that this procedure is not applicaidevever, it is not absolutely
true. Though the corner points on smooth bodies are reaikirlg, illumination of
smooth bodies creates similar characteristic points. kamgle, even illumination of
a spherical body creates a point of maximum of illuminatietensity which is easily
registered on a pair of the images. We will describe herehaltacteristic points which
illumination creates on smooth bodies.

1) A point of minimum of illumination intensity.

2) A point of maxima of illumination intensity.

3) A saddle point of illumination intensity.

4) A positive cusp (peak) point: a point with a high and pwesitialue of a curvature
radius on a level curve of constant illumination intensity.

5) A negative cusp (peak) point: a point with a high and negatalue of a curvature
radius on a level curve of constant illumination intensity.

6) A curvature point of inflexion: a point on a level curve inialh change of the
sign of curvature radius occurs.

The characteristic points types 1-3 are searched as a pdimtzero derivatives
along axes x and y. Curvature in points 4-5 is searched bytimbeof a series of level
lines with some certain step on illumination intensitied ararching on these lines of
extremes of a curvature radius with a value of curvatureusadiore than some chosen
threshold. For calculation of a curvature radius in poimtadevel curve the formula 1 is
used. Points of the type 6 are registered by changing of a@ourvature radius. After
all characteristic points are discovered, it is necessadjscover their correspondence
for two images. It can be made by the following methods:

1) Corresponding points should have the same types dedatimeve.

2) They should have almost equal illumination intensity.

3) For corresponding points of 1-3 types the two principavature radiuses should
be close in values. (Curvature radiuses calculated forlamithation intensity surface
as functions of x and y in these points).

4) For corresponding points of 4-5 types curvature radii [&val curve should be
close in values.

5) For corresponding points the nearest characteristiotp@long a level curve
should correspond to the similar points on the second imagdéhave the same types
with them.

6) Comparing local neighborhoods of points, also as it is enadmethod SIFT
[10-12].

After determination of corresponding points their finalrespondence and the epipo-
lar geometry is searched by the method RANSAC [7]. But it iseveo use the specific



version of this method [5]. It is appropriate for the case wttee majority of the dis-
covered points can lie close to a single plane and only snzatl gf these points is
considerably out of this plane. It is a frequent case for gimbodies.

2.2 Implementation of the first method (ICPM) for real images

Numerical calculation demonstrates that the method SIBF]2] discovers many of
the characteristic points featured above (Figure 2).

Fig. 2. Correspondent points on two images.

In Figure 2 about 30 pairs of the corresponding points aréeuhioy yellow color.
These points are found by SIFT method and part of them lie avosimbodies (sculp-
tures). Butall these points on smooth bodies concern to one of 1-5 typesaftar-
acteristic points featured above. Correspondence of thdspwas found by the 6th
method (from the six methods featured above). Numericaldation shows that these
pairs of points give enough information to precisely catelthe epipolar geometry by
the usual methods. This result confirms efficiency of the rilesd method. This effi-
ciency is explained by the fact that the characteristic fsane found with split-hair ac-
curacy. Indeed, intensity of illumination along these tsdaries slowly and smoothly,
except for the cases of characteristic points featuredeabbkesults in small errors for
the epipolar geometry.

2.3 Method of tangents to an outline of smooth bodies (OTPM)

However, there is one more method that has also split-hamracy - a method of
tangents to the outline of smooth bodies. (This method isadissed in details in [1,
2,8].) Let A be the tangency point of a tangent to a smoothdmdutline from the
epipole on the first image. And B is the tangency point of theespondent tangent
to the correspondent outline of smooth bodies from the stepipole on the second



image. It is proved in [8], [7] that these two points are cspendent points of the
images. Suppose that we have many smooth bodies and, centlggmany outlines
of smooth bodies. Then, by dividing image planes on meshesowsider all possible
methods for putting epipoles to these meshes. It is postilfiiad pair epipoles giving
the minimal error for the described property of tangents described method is very
similar to a method of tangents to level curves of illumioatintensity described below
(CTPM). However, the method described here is much moretdkan the method
described below. Really, level curves of illumination imtéy are found insufficiently
precise both because of inexactness of assumption of cahsightness and because of
noise. This noise leads to major errors in definition of cgpoanding points, especially
for smooth bodes. Indeed, intensity of illumination alohgde bodes varies slowly and
smoothly, except for the cases of characteristic pointtifed above, and outlines of
smooth bodies. This fact results in the split-hair accuraicthe described here two
methods with respect to the two methods described belovada of a small number of
smooth bodies, the described here method of tangents casebleonly for validation
and improvement of the method of characteristic points orofdy finding aset of
possible epipolar geometries.

The second pair of two methods described below (CCPM and CGTfidde methods
use level curves of constant illumination intensity) findresponding points with much
bigger errors. It occurs because assumption of constagitthess is not exact. That
results in serious errors during finding epipolar geomdtngrefore, these methods can
be used only for validation and improvement of the preserihouk or only for finding
asetof possible epipolar geometries.

3 Two methods using level curves of illumination intensity

In this section we present our method for recovering the adpipgeometry of two
images, by determining the fundamental matfix(A pair of corresponding points in
the two imagesx andx’, must satisfy tacFx'T = 0.) The purpose of methods stated
in this section is reconstruction of epipolar geometry o @D images of 3D smooth
bodies photographed from various positions. For finding@gar geometry in a case of
non-smooth bodies we use correspondence of the refereimts,much as corners, for
example. In case of smooth bodies these corner points amelgrinot present which
makes finding correspondence quite a problem to solve. Wesless, it can be tried to
be solved. A basis for this purpose is assumption of constagitness. It is supposed
that corresponding points in different images have one hadame value of intensity.
This assumption is proved for the following conditions [7]:

1) The Lambert law of reflections of surfaces.

2) An invariance of position and intensity of irradiatingusces and also objects
position invariance during shooting.

3) A small angle between an optical axis and a direction oncdumpject point, i.e.
the object should be near to the optical axis and have smgililansizes.

4) Constant interior camera calibration for both images.

It is necessary to note that because of infraction of thepginrements and also be-
cause of presence of noise the assumption of constant heighis carried out very



approximately. It creates all further problems. The curéekein all points have iden-
tical intensity is called an isophoto curve. Correspondesicreference points as was
in the case of nhon-smooth bodies, is exchanged by corresporadsophoto curves for
smooth bodies. We shall see further that the same inexaabhassumption of constant
brightness leads to similar problems in the next methods too

3.1 Description of the two methods for finding correspondene and
reconstruction of epipolar geometries.

The first method presented by us allows passing from correlpwe isophoto curves
to correspondence of points on these lines. We shall calinttéthod CCPM. For find-

ing this correspondence we shall use closed isophoto cuBagerally lines on object
of shooting which image are isophoto curves, they are carafgld space curves. How-
ever, in a large number of practical cases all points of suchecalmost lie in the same
plane and, accordingly, connection between isophoto suswevarious images is very
close to homography. In this case homography cusp transfetsp, and the inflection

point transfers in an inflection point. Accordingly, for tbemposite curve with strongly
varying curvature there is a correlation between quastifeurvature in the correspon-
dent points. Moreover, in the majority of practical casesibgraphy between isophoto
curves is very close to the similarity of transformationlirting translation, rotation

in plane and scaling. Curvature of curves in the correspainpleints is identical up

to constant for similarity transformation. For finding i$mpo curves, curvature in any
point is not necessary to be searched for the shape of tieisTimere is a simple for-

mula allowing finding curvature on the basis of intensitytritisition in a neighborhood

of this point:

s %%
b= d'v(|w|) @

, Wherek is curvature of isophoto curve ards intensity.

Assuming that correspondence between isophoto curvesss t similarity trans-
formation, choosing complicate closed isophoto curveh wfitongly changing curva-
ture k and carrying out rescaling by multiplying curvaturelength of the curve (the
formula 2, 3) we can find correspondence between these curves

K =kxL )

A mean value of rescaled curvature doesnt depend on lengthof the curve

1 L 1 L L 27
k’”mean:z/o k’"dz:Z/O kadl:/O kdl:/o do=2r  (3)

It can be achieved by finding correlation between two fumstidhe rescaled cur-
vaturek x L as functions of the rescaled distangefrom the some point on some
chosen isophoto curves, and the similar function for theespondent isophoto curve



where the rescaled distances are calculated from a somercleosrespondent point
on this correspondent isophoto curve. Some correspondeteeen these two points
which gives the maximum of correlation of these two funcsiés considered as cor-
rect correspondence. Other correspondent points are ddehtcal rescaled distances
from the already found pair of correspondent points. Th#tésproperty of similarity
transformation. It is also necessary to note that all the@lmentioned concerns to the
smoothed image and functions; otherwise the noise distltlorrelations. l.e. it is
required to use filtration of images before searching istplarves and filtration of
functions for the rescaled curvature for searching maxir@icorrelation.

For testing of correspondence instead of function of thealesl curvature in cur-
rent point, the rescaled distance from a centre of gravitgfwrent point can be used.
Such function should give a maximum of correlation appratigly under the same
requirements as the function of the rescaled curvatureogihg various pairs of cor-
respondent isophoto curves, we get a set of correspondanspdhe problems is that
for any alone smooth body all these points lie in very closealtwost parallel planes.
These planes lie on almost identical distance from the canier the parallax will be
very small, and the fundamental matrix determining epipgé&ometry will be defined
ambiguously. To solve this problem, we chose two smoothdslticated on various
distance from the camera, and the parallax is large enougbdphoto curves on these
bodies. It is necessary to note, that this correspondertageba points is found on the
basis of assumption about similarity and, hence, is notteXhese errors are added to
the errors caused by inexactness of assumption of constightriess. Therefore, the
fundamental matrix received by conventional methods om#sés of these pairs of the
correspondent points is far from its true value. For finditsgnore precise value it is
necessary to involve additional reasons. First of them meoted with the fact that
in most cases points of a 3D-prototype isophoto curves lyslimlalmost in the same
plane. Accordingly, connection between isophoto curvesya already noted above,
is close to homography. Knowing pairs of the correspondeititp, we can find x 3
matrix homographyH, linking these pairs of points. For this purpose a normdIReT
algorithm is used [7]. The result can be improved by minimicraof the function de-
termined as the sum of absolute values of distances betvmradraphic mappings of
isophoto curve points to nearest points on correspondepi&to curve. Then this sum
is added to the sum, received by the same way but two imagéstarehanged, and
mean value of these errors is calculated:

S = <Z <mjind(x;»7Hxi) —|—mjind(xj,H_1X;))>/2N
. @
, whered(a, b) = ((a1/as — by /bs)? + (az/as — by /bg)?)1/?

Whered is distance between points with homogeneous coordinaies;; are ho-
mogeneous vectors of correspondent points on isophot@suRointsx; are on the
first image, points; are on the second image. N - number of pair of correspondent
points, H- evaluated homography between closed isophoto curvesinglaklue of a
corner element of matri¥/ (3, 3) equal to unity, we search for the local minimum of



function defined by formula 4 with respect to other elemeriitthis matrix. For the
initial iteration the value of matri¥/ will be used which is already found above by nor-
malized DLT algorithm. For search of the local minimum we gtndard function of
MATLAB packagefminsearch().The received minimal value of function defined by
formula 4 , we shall denote &#snin. It is necessary to note that resulting homography
is found by non-exact methods and, accordingly, also is xextte

Suppose that we know homogeneous coordinates of epipoleeosetond image.
Using also the homography found above, we can calculatedafoantal matrix from
the following formula:

F=1[e|xH
(5)
0 —ef €
wherele']x = | e 0 —¢
—eh e 0

Wheree' - is a homogeneous vector of epipole on the second image, bhig s
homography between two images. For search of candidatgsipole we divide the
plane into a finite number of regions as it is described in do®sd part of this section.
In each region we select just one epipole. Lets choose aifumér evaluation of
quality of a fundamental matrix. We will map each point onfir& image to an epipolar
line in the second image. Then we shall calculate the alesohltie of distance from
the correspondent point on the second image to this epitioks. We shall take the
sum of all these distances, and then we shall add this sunetsirtilar sum received
by the same way but with interchange of images. Then we shdltlie mean value for
components of these sums.

N
7 = <Z (dl(X;,FXi) +dl(X,‘,FTX2))>/2N
i ©)

x|

l‘g\/l% —‘rl%

Whered,; distance between a point with homogeneous coordinatesraagipolar
linex;, x’; are homogeneous vectors of correspondent points on ismphotes. Points
x; are on the first image, points; are on the second image. N - number of pair of
correspondent pointd;- evaluated fundamental matrix. Choosing some candidate in
epipole and having taken as initial value for homographyrixat found as described
above by minimization with help formula 4, we can carry outlier iterations for and
find a local minimum of the function described by the formula 6

Found homography will be more precise then its initial valobecause initial ho-
mography was only the first approximation. In order not to too far from initial
homography, we shall assume that deviation S determinebdébfotmula 4 cannot be

, whered; (x,1) = ( )
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more thenl.5Smin whereSmin is its minimal value found above. It can be achieved
by introduction of the additional term in the formula 6 eqtmrero forS < 1.55min
and fast increasing faf > 1.55min. Search of a local minimum can be carried out
with use of the above mentioned function of MATLAB packafgeinsearch().For
each candidate in epipole with the number i we find optimund&mental matrixt'i.
The best of them can be defined as giving a minimum of functiavéshall term this
minimum value as¥Zmin.

Unfortunately, since the found pairs of the correspondeiritp are only approxi-
mate, the minimum of function 6 can not give the true value hfralamental matrix.
To improve the result we can take not alone fundamental rmaghevant toZmin, but
all local minimums of functior”Z (F'i) from argument i (epipole correspondent to i=1
is in the center of image and run away from center to maxinmiehald distance along
spiral curve for largetf (yellow spiral on figure & h) ) ) , where i is a serial number of
epipole. From all found local minimums we choose only that 1.34Zmin, where Z
is calculated from formula 6.

It will give us not hust one solution but a large set of cantéiddor the solution.
For finding of the best of them the second reason and the secetitbd of search of a
fundamental matrix which we shall term CTPM can be usedbaised on the following
property of epipolar geometry that is correct for assunmptid constant brightness:
epipolar line tangential to isophoto curves maps to epiploie, is also tangential to
correspondent isophoto curves. To evaluate how precisidytoperty carried out, we
can introduce the following function:

N, Ny
- . /tangent _ . tangent o,
Z = ( JIQJIVI}{ di(y; S Ex;) + 2 min di(y; ,F xi)>/(N1 + N2)

i=1 i=1

()
)

xT1]

l’g\/l% +Z%

Whered,; distance between a point with homogeneous coordinatesraadipolar
line, x;, x’; are homogeneous vectors of globalmaximum points of intypsiepipolar
lines. Pointsx; are on the first image, pointg are on the second imag®; - number

of points on first image that have correspondent tangentsp@jlﬁngenton the second
image with respect to condition described beldy, - number of points on second

image that have correspondent tangent p@jﬁ':%ggenton the firstimage with respect to
condition described below:- evaluated fundamental matrix. Lets choose a certain set
of epipolar lines on the first image transiting through a stndmdy.We shall consider
intensity along pieces of epipolar lines lying inside theaga of a smooth body. Points

of extremum give us a point of tangency epipolar line with id@photo curve. We
shall choose some epipolar line, and among points of exirenve shall choose a
global maximum. We shall find the correspondent epipola tin the second image.
Also we shall find all isophoto curves on the second imagertugtvie same quantity of
intensity, as in the point of a global maximum found abovehmfirst image. Lets carry
out all possible tangential to these isophoto lines fronpelei on the second image.

, whered; (x, 1)

(
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Among all points of a tangency we shall choose what is clogespipolar line and
we shall find its distance to the epipolar line. We shall mddeegame calculations for
all epipolar lines, and then we shall calculate the sum dfoalhd distances. Then we
shall find the similar sum, by images interchanging. Then kadl add together these
sums and then we shall calculate the mean value of distatees, We get evaluation
for precision of performance of the tangential epipolaediproperty described above.
However, the algorithm as described above works with bitjeyst Actually, among all
points of a tangency found on the second image should ther@dsnt correspondent
to a global maximum on the first image. Its distance to theespondent epipolar line
gives a current error of a method. Other points of tangennyiro@rove only the result
and reduce an error if one of them lies closer to epipolass|itiean this true point of
tangency. However, the situation is much more difficult. Thee point of tangency
can in general miss on the second image. It can be closed bysaplarts of smooth
bodies or can be not found because of an error in assumptioanstant brightness.
In this situation a point of tangency the closest to epipbies can lie very far from
this epipolar line because it has no relation to the truedgang correspondent point.
Such tangency point consequently gives outlier to evatlfatection. To prevent such
situation, we offer the following method. We shall take melcurves on the first and
second image. We shall find homography, mapping these cbgvése same method
which we found homography, mapping isophoto curves. Wd §hdlwith help of this
homography on the second image mapping of a global maximunt, gefined above
and we shall consider a small circular neighborhood arohisdnapping @ percents
from the area occupied with a smooth body projection on toersgimage)(figure 3).

The true point of tangency should lie in this neighborhoobergfore, we shall
view only the points of a tangency lying in this neighborholb@ny point of tangency
in this neighborhood is not present, we throw out this came four consideration. This
method will prevent appearance of outliers in evaluateation. The similar method
can be used for search correspondent isophoto curves.|ictixae have one isophoto
curve on the first image, it usually corresponds to not alarteséveral isophoto curves
on the second image. Which one of them to choose? The one whiclesest to a
homographic mapping of the first image isophoto curve. Wehasaography received
from outline curves. We can use the above described CTPMiaah method that
excludes outliers to evaluate all possible fundamentatirestand choose the one what
gives the minimal error. However, it is a too long way. Fotitegby the second CTPM
method we shall choose only those fundamental matrixeshaidwe passed the filter
of the first CCPM method. Thus, we get a final evaluation of amdntal matrixes.
Precision of this evaluation is restricted only to preaisaf assumption of constant
brightness.

3.2 Searching for epipoles

In this section we present a partition of the infinite plarte efinite number of regions.
All points in a given region will be treated, under this pioti, as a single epipole.
Therefore, all lines intersecting a given region will be niems of its epipolar line
set. As we explained below, the size of each region is prap@t to its location with

respect to the image.
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Fig. 3. Finding correspondent tangential point.

Our plane partition is defined by concentric circles withteo§eadii {r;}%_,, where
r; > ri+1 foreachl < ¢ < k andr; = co. The center of these circles is the image
center. Let each region be defined by the 4-tu@@edd;, r;, r;+1), whered; andd; + 56;
are two angles, ang; andr;,, are two radii (see Figure 1). The parameters of this
partition are the set of;s and the set 0§6;s. For a given ring, there are two degrees of
freedom to define the set of regions in that ring: the ringtleng — ;.1 and the region
width, §6;. These parameters are set so that the partition maintasytitem resolution
and the equal hit measure. Later we define these two propeRa simplicity, we
assume a circular image with radius of one.

System resolution: Any vision system is limited by the accuracy of the measurgme
We definesystem resolutioto be~ if it does not discriminate between two image lines
passing through a point when the difference in the line timas isyy < .

We say that the partition maintains the system resolutioanathe system cannot
discriminate between two candidate epipoles which aretéocan the same region.
Formally, Assume the system resolution is . K&be a given region and,,e; € G
be two points (see Figure 4 ). Ltandl, be two lines connecting an image point
and the two pointe; andes, respectively. When the angle betwederand!, is less
than the system resolutioy the system cannot discriminate between these lines. More
generally, for a given regiot we defineag(q) to be the maximal angle between the

image pointg and any two points in the region. Lel; = max ag(q) then the
gc€lmage

system resolution is maintained for G.

Note that the system resolution cannot be maintained ironsgivhich overlap the
image or are very close to the image. The closer the pointatietregion the larger
ac(q) becomes. In particular whepe G thenag(q) = 2.

Hit measure: Roughly speaking, the equal hit measure property guarsutee the
number of epipolar lines considered for each region is griisticly equal. We de-
fine the hit measure of a regiof] M (G), to be the probability of a random epipolar
line intersecting a regiot. Each candidate epipolar line we consider is defined by an
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Py

Fig.4. q is an image pointe; and e2 are two points in a given regio&'. The anglegf =
acos((e1 — q)(e2 — q)7/||(e1 — q)|||lez — ql|). If B < v wherey is the system resolution,
then the system cannot discriminate between the epigglesndes.

image point and a single direction. We assume that thes®lapilines are generated
by a uniform distribution of points in the image and uniformtdbution of directions.
Formally, the following integral computdg M (G).

HMG) = 5 [[ ac(e.izay (8)
z2+y2<1

By changing the integral variables fromandy to the polar coordinates of the
image pointsg andr, we obtain:

1 2
HM(G) = %/0 /0 rag(rcos(¢), rsin(¢))dedr 9)

(r is the determinant of the Jacobian of the exchange varigbles
In order to have a probabilistically equal number of pointsach region, we would
like HM (G) to be identical for all regions.

In the Appendix we describe how to set the partition parametganddé;, in or-
der to maintain the above conditions. We distinguish betwbeee types of regions
which we analyze separately. They include infinite regiomghee outermost ring, re-
gions within the image and close to the image such that thersyesolution condition
cannot be maintained and intermediate regions. The paeasndé¢pend on the desired
resolution of the system;.

3.3 Functions for testing of correspondence.

Lets assume that we have some fundamental matrix. We stralilirce three ways of an
evaluation as far as it is close to the true fundamental mathie first evaluation shall be
termed CCPM. It is based on a set of the correspondent pointslffrom correlation of
curvatures for isophoto curves and given by the formula & Sdtond evaluation shall
be termed CTPM by us. It is based on property of the tangetttisdophoto curves
epipolar lines to map also into the tangential to correspahisophoto curves epipolar
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line and is given by the formula 7. The third evaluation sbhaltermed SM. It is based
on a set of almost precise correspondent points receivedbsriog smooth bodies
with a fabric with a texture of a chess board (figure 5). Thenpletograph pair of
images of this fabric from the same points of shooting fromciwlimages of smooth
bodies have been received also. Evaluated function is diiyehe following formula:

B= (Z (di(2}, Fz;) +dl(zi,FTz2))>/2N

(10)

xT1]

34/ l% + l%
Whered, is distance between a point with homogeneous coordinatesraepipolar

line, z;, z’; are homogeneous vectors of correspondent points on falihicaviexture

of a chess board. Poinis are on the first image, pointg are on the second image.

N - number of pair of correspondent poinis; evaluated fundamental matrix. From

this almost precise set of the correspondent points by aadeththe normalized 8-dot

algorithm (for number of pointa > 8) [2]. almost precise fundamental matrix can be

received. We shall term this third standard method for fumelatal matrix finding as
SM.

, whered; (x,1) = ( )

Fig. 5. Covering smooth bodies with a fabric with a texture of a chess board.

3.4 Implementation

For testing of algorithms nine pairs of images of a pair of sthdodies have been
made. A female head and a female bust were used as smootls.badrdingly, we

have nine various cases of algorithms implementation. ésaliffer with an arrange-
ment of the camera position or an arrangement of smooth olfiecases 3,4, and 6
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two subcases are chosen, distinguished by a choice of ismphoves on the basis of
which calculation of the correspondent points by a CCPM wetthas made. As result
of use of this method we get a finite set of candidates for aafdefundamental matrix
as it has been described earlier in Section 3. For each of caseibcase, eight figures
are given:

1) In the first figure we can see a set of almost precisely qooregent points and a
set of correspondent to them epipolar lines of a fundamemadlix received by almost
precise SM method.

2) In the second figure we can see a set of almost preciselgspondent points
and a set of correspondent to them epipolar lines of a fundhmatrix. This matrix
is one component of the complete set of candidates on thafoedtal matrix, received
by a CCPM method. SM evaluation gives a minimum for this matmong all matrices
of this set.

3) In the third figure we can see a set of almost precisely spomedent points and a
set of correspondent to them epipolar lines of a fundamemédlix. This matrix is one
component of the complete set of candidates on the fundafaatrix, received by a
CTPM method. CTPM evaluation gives a minimum for this ma#iimong all matrices
of this set.

4) In the fourth figure we can see a set of almost preciselyespondent points and
a set of correspondent to them epipolar lines of a fundarhenatizix. This matrix is one
component of the complete set of candidates on the fundafaatrix, received by a
CCPM method. CCPM evaluation gives a minimum for this maarnong all matrices
of this set.

5) In the fifth figure we can see a set of the correspondent ptyirtg on corre-
spondent isophoto curves and received by a CCPM method.

6) In the sixth figure we can see CCPM evaluation for a fundaatematrix as
function of the epipole number. This epipole located on #eoad image. All epipoles
lie in regions; the method of division into these regionsésaibed in the Section 3.
The first epipole lies at center of a figure and with increasth®humber moves from
center along spiral figured by yellow color in the eighth figuFundamental matrixes
are received by a CCPM method. Red asterisks designatettbé candidates giving
the best CCPM evaluation.

7) In the seventh figure we can see CTPM, CCPM and SM evalufdiom set of
the candidates marked by red asterisks in the sixth figureasterisks lying on curves,
mark points of a minimum. The asterisks not lying on curvaslanated after graphics
mark CTPM, CCPM and SM evaluation for almost precise fund#aienatrix. This
matrix is received by a SM method.

8) In the eighth figure by red daggers are marked centre aneseafgthe second
image. The yellow spiral connects regions in which we plagipaes. Epipoles are lo-
cated along this spiral, since center of the image. By restia&tit is designated epipole
on the second image of almost precise fundamental matreived by a SM method.
Red, green and blue circles are designated epipoles, porrdent to the fundamen-
tal matrixes minimizing a CTPM, CCPM and SM evaluation fimetamong a set of
candidates, received by a CCPM method and marked by redskstar the sixth figure.

Casel.
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Casel includes the following figures: figuré 8) (b) (c¢) (d) (e) (f) (g) (h).

Case?2.

Case?2 includes the following figures: figuré 8) (b) (c¢) (d) (e) (f) (g) (h).

Case3a.

Case3aincludes the following figures: figure(l) (b) (c) (d) (e) (f) (g) (h).

Case3b.

Case3bincludes the following figures: figure(1d) (b) (¢) (d) (e) (f) (g) (h).

Case4a.

Case4daincludes the following figures: figure(2® (b) (c) (d) (e) (f) (g) (h).

Case4b.

Case4bincludes the following figures: figure(1® (b) (¢) (d) (e) (f) (g) (h).

Case5.

Caseb5 includes the following figures: figure(1&) (b) (c¢) (d) (e) (f) (g) (h).

Caseba.

Case6a includes the following figures: figure(2 (b) (c) (d) (e) (f) (g) (h) .

Casebb.

Case6b includes the following figures: figure(1®) (b) (¢) (d) (e) (f) (g) (h).

Case7.

Case7 includes the following figures: figure(1&) (b) (c¢) (d) (e) (f)(g) (h).

Case8.

Case8 include follow figures: figure (L8) (b) (c¢) (d) (e) (f)(g) (h).

Case9.

Case9 includes the following figures: figure(1®) (b) (c¢) (d) (e) (f)(g) (h).

For these figures:

(a) the set of exact correspondent points (almost exact setlfitam the chesslike
fabric) and epipolar lines found from a fundamental matreéceived by the SM from
these points

(b) the set of exact correspondent points and epipolar linesdfdtom a funda-
mental matrix. This matrix gives a minimum error for set offpgpes candidates defined
on figure f (Red asterisks) and for the exact set of corresputrjubints.

(c) the set of exact correspondent points and epipolar linesdfdtom a funda-
mental matrix. This matrix gives a minimum error for set oifpepes candidates defined
on figure f (Red asterisks) and for the correspondent poeéttsefined by the CTPM
and current epipoles.

(d) the set of correspondent points (almost exact set) and lepiptes found from
a fundamental matrix. This matrix gives a minimum error fetraf epipoles candidates
defined on figure f (Red asterisks) and for the correspondintgset defined by the
CCPM.

(‘e) the set of the correspondent points lying on correspondeptioto curves and
received by the CCPM.

(f) the error of a fundamental matrix as function of the epipsketsindex. These
epipoles located on the second image. All epipoles lie iforexgj the method of division
into these regions is described in the Subsection 3.2 . Tétesfipole lies at center of a
figure and with increase of the index moves from center alpigisfigured by yellow
color in the figure h. Fundamental matrixes are received tbeyCCPM correspondent
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points sets and current epipoles positions. Red asteresdigrthte the set of candidates
giving the minimal local errors.

(g) errors of fundamental matrices as a function of index in stib$ the can-
didates to epipoles marked by red asterisks in figure f. Thddmental matrices are
found from current candidates to epipoles and correspdrmtents sets(set defined by
the CTPM and current epipoles(red line), set defined by CC@eleh line) and exact
set (blue line)). Errors are calculated with respect to timaesrelevant correspondent
points sets. Asterisks on the lines mark minimums. The thsterisks (not lying on
curves and located after graphics) mark error of the exaxtdmental matrix. The ex-
act fundamental matrix is found by SM from the exact set ofespondent points.
Errors are found for sets of correspondent points (set dbfiiyethe CTPM and ex-
act epipoles (red asterisk), set defined by CCPM (greenisigtemd exact set (blue
asterisk)).

(h) marked by red daggers are the center and edges of the secagd.iifhe
yellow spiral connects regions in which we place epipolgspé&les are located along
this spiral, from center of the image. Designated by redrisgtés the epipole on the
second image from exact fundamental matrix received by EheR®sy points mark the
set of epipoles candidates. This set s received by the CGRIVharked by red asterisks
in figure f. Circles are designated epipoles, corresponaetihe fundamental matrixes,
witch are correspondent to minimum errors (between all mEnts) for CTPM (red
circle), CCPM (green circle) and exact (blue circle) copmwdent points sets.

From the given figures it is possible to draw the following closions:

1) The CCPM method gives the full set of candidates on thedoligion. Epipoles
of these matrixes lie approximately on straight line. Whathis straight line? We
shall take homography (relevant to evaluation Smin in a CGRéthod) between two
isophoto curves, lying on a sculpture of the female head anitmages. We use this
homography to find on the second image mapping of isophoteedoelonging to a
bust on the first image. This mapping is shifted with respeciorrespondent isophoto
curve belonging to a bust on the second image, because oékepailhe direction of
this shift gives us the required straight line.

2) Almost always (in 10 cases from 12, and besides two bedssaiscactually cor-
responding to the same pair of pictures) among set of sokifmund by CCPM method
there is a solution which is very close to the almost precidation received by a SM
method. This solution gives minimum of a SM evaluation fas tet.

3) The solutions correspondent to a minimum of a CTPM or CCRauations for
this set, less than in 50 percents of cases are close to aprexsse minimum (in 5
cases from 12 for CTPM and in 3 cases from 12 for a CCPM evaluati

4) CTPM or CCPM evaluations for almost precise solutiongiesd by the SM
method are not in minimum while SM evaluation always corogsfs to a minimum.
These three (CTPM, CCPM and SM) evaluations for SM methagtisol are compared
to similar evaluations for the set solution received by CQORbthod.
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4 Summary and discussion

We present four methods for recovering the epipolar gegnfieim images of smooth
surfaces. The existing methods for recovering epipolanggry use corresponding fea-
ture points that cannot be found in such images. The first adeithbased on finding
corresponding characteristic points created by illunidmei CPM illumination charac-
teristic points method). The second method is based onsmmnelent tangency points
created by tangents from epipoles to outline of smooth lso@@d PM outline tangent
points method). These two methods are exact and give coasalts for real images,
as positions of the corresponding illumination charasteripoints and corresponding
outline are known with small errors. But the second methdiinged either to special
type of scenes or to restricted camera motion.

The level curves of constant illumination intensity (usedthe second pair of meth-
ods) are found precise but insufficiently both because oficttude of constant bright-
ness assumption and because of noise. This noise leads @o engjrs in definition
of corresponding points found from the level curves espigdiar smooth bodes. In-
deed, illumination intensity along these bodes varies Isi@amd smoothly, except for
the cases of illumination characteristic points used ferfitst method, and outlines of
smooth bodies. This fact results in the split-hair accuddire described here first pair
of methods with respect to the second pair of methods destitielow. In case of a
small number of the smooth bodies, the second method of iésmgan be used only
for a validation and an improvement of the method of charastte points or for only
finding asetof possible epipolar geometries.

Two more methods are also offered, named CCPM and CTPM, éoclsimg epipo-
lar geometry of images of smooth bodies. The CCPM method ssedan search of
correspondent points on isophoto curves with the help aktation of curvatures be-
tween these lines. The CTPM method is based on property ¢étigential to isophoto
curve epipolar line to map into the tangential to corresgmisophoto curves epipolar
line. The standard method termed SM and based on knowledgairsfof the almost
exact correspondent points, has been used for testing @ thhed methods. From dis-
cussion of results of these methods in Section 3.4 we carumthat these methods
for searching epipolar geometries allow us to find in mosesamly a set of the so-
lutions containing the solution close to the true solutioat do not allow us to find
this good solution among this set. An exception is given foarse when epipoles lie
in infinity (that truly, for example, for translation of thamera parallel to plane of the
image and in for some other cases). Since epipoles for altisal of chosen set lie
approximately on one straight line (a direction of a pardlia a case epipoles on in-
finity, their position is determined uniquely by directioftbis straight line. The reason
of ambiguity in other cases is generally defined by the eliroported by inexactness
of assumption of constant brightness. An additional esal$o imported with inex-
actness of a CCPM method, but it is not the main reason of ablgm. Among the
found (by CCPM method) set almost always there is a solutiosecto precise, but it
can not be found with the help of a CTPM evaluation becausleeoétrors imported by
inexactness of assumption of constant brightness.
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Appendix: Setting the partition parameters

Further we describe how to set the partition parameteenddé;, in order to maintain
the system resolution and the equal hit properties. Wengdisish between three types
of regions: regions on the outermost ring, regions withia ithage and close to the
image such that the system resolution condition cannot lietaiiaed and intermediate
regions. The parameters depend on the desired systemtiespiu

Outer ring regions: For regions in the outer ring the epipolar lines are almosi|fE.
In this case the regions are defined such that= co andGy; = (6;, 66, 00,73). We
next show that it is possible to chooseanddd anddd such that the regiorty, satisfies
the system resolution.

Fig. 6. This figure shows a region in the outermost ri6g,The maximal angle between an image
point and two points in the region,:, is obtained at one of the two image pointsor q2. The
pointqs is the intersection of the image circle with the angle biseéfohe pointq: is a point
on the image circle such that the tangent to the image circle thrqugtasses througp, .

Using trigonometric considerations, it can be shown tha&foouter ring regiorG,
the maximal angle between an image point and two points ireiien,«., is obtained
at one of the two image pointg or q» as illustrated in Figure 6 (the point at which the
maximum is obtained depends snanddéd). We next define these points. Let t1 and
t2 be the rays that define an outer region, G.jhgtindp, be the delineating points of
the region (the intersection points of the region rays aedctitlers). The pointq; is
the intersection of the image circle with the bisector ofahgledd. The pointq, is the
intersection point of the image circle with the tangent fribra pointp; to the circle .

It can be shown using trigonometric considerations that= maz(ac(q1), ac(qz))
where

ac(qr) = 2tg~( ) and  ag(qz) =060+ sin”'(1/r2)  (11)

90y _ 1

rosin(22)
Z)
2

r9 cos(

It is therefore possible to set one of the two variablgsor 66, and compute the
other variable such that; < v wherey is the system resolution. In our system we set
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061, and solve for,. The hit measured M (G), is then set to the value computed on
G (using formula 9). This value depends on the initial choitédy.

Intermediate regions: Two parameters define an intermediate regign; anddd. We
next show how to define these parameters based on the syselutian,~ , and the

hit measure H M (G). Similarly to the outer ring case, at an intermediate rirgjoe

G, ag = maz(ag(qi), ag(qz)), whereq is defined as in the outer region case, and
gz Will be defined next.

Fig. 7. This figure shows an intermediate regich, The pointq2 satisfies that the circumscribed
circle of the pointp1, p4 andqz is tangent to the image bounding circle. The anglgq2) =
P1,d1, P4 is maximal for all image points which are outside the circular section defipéd.

Let Cinqge be the set of image points on the image bounding circle, deitdie
image section defined ¥ anddé. It can be shown thats(q2) = max{ag(q)lq €
Cimage }, if the circumscribed circle of the poings, p4 andq, is tangent to the image
bounding circle (see Figure 7). This is true since at thispibie circumscribed circle
has the smaller radius, and therefore the andje;, q1, p4) is maximal (by the sine
theorem). It is now possible to write down the equations t&dineq,. Let m be the
circumscribed circle center efz, p1, p4. Assume that the image center ig@t0) and
the image radius is one, in this cagigy || = rit1, [[pal| = i, andqz = ay- Under
this setup the radius of the circumscribed circle and théeadg and~ are given by:

_ _pipa”
cos(80) = riipan
_ (Pi—q)(pa—a)” 12
cos(7) = Tips=allllpa—al (12)
|lp1 —m|| = [[psa — m|| = [[m]|| - 1

Givenr; and~ and one of the region parametets; or 66 it is possible to solve
these equations for the other parameter, as long asis large enough. The region
must also satisfy the equal hit measure, which is definedmdiéa 9. Our system solves
these non linear equations by numerical methods yieldihgegaof the parameters,
anddb;.
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Inner regions : In the inner regions, the system resolution constraint cebha main-
tained. We can only maintain the equal hit measure. We thexdfave only one con-
straint. We set one of the unknown parameteys; andéé;, arbitrarily, and solve for
the other one. In our system we 86 to be a constant equal to the last computed value,
and solve for; ;.
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