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Abstract. We present four methods for recovering the epipolar geometry from
images of smooth surfaces. In the existing methods for recovering epipolar ge-
ometry corresponding feature points are used that cannot be found insuch im-
ages. The first method is based on finding corresponding characteristic points cre-
ated by illumination (ICPM - illumination characteristic points method). The sec-
ond method is based on correspondent tangency points created by tangents from
epipoles to outline of smooth bodies (OTPM - outline tangent points method).
These two methods are exact and give correct results for real images, because
positions of the corresponding illumination characteristic points and correspond-
ing outline are known with small errors. But the second method is limited ei-
ther to special type of scenes or to restricted camera motion. We also consider
two more methods which are termed CCPM (curve characteristic points method,
green curves are used for this method on Figures) and CTPM (curve tangent
points method, red curves are used for this method on Figures), for searching
epipolar geometry for images of smooth bodies based on a set of level curves
(isophoto curves) with a constant illumination intensity. The CCPM method is
based on searching correspondent points on isophoto curves with the help of cor-
relation of curvatures between these lines. The CTPM method is based on prop-
erty of the tangential to isophoto curve epipolar line to map into the tangential
to correspondent isophoto curves epipolar line. The standard method termed SM
(standard method, blue curves are used for this method on Figures) and based
on knowledge of pairs of the almost exact correspondent points, hasbeen used
for testing of these two methods. The main technical contributions of our CCPM
method are following. The first of them consists of bounding the search space
for epipole locations. On the face of it, this space is infinite and unbounded.We
suggest a method to partition the infinite plane into a finite number of regions.
This partition is based on the desired accuracy and maintains properties that yield
an efficient search over the infinite plane. The second is an efficient method for
finding correspondence between points of two closed isophoto curves and finding
homography, mapping between these two isophoto curves. Then this homography
is corrected for all possible epipole positions with the help of evaluation function.
A finite subset of solution is chosen from the full set given by all possibleepipole
positions. This subset includes fundamental matrices giving local minimums of
evaluating function close to global minimum. Epipoles of this subset lie almost
on straight line directed parallel to parallax shift. CTPM method was used to
find the best solution from this subset. Our method is applicable to any pair of
images of smooth objects taken under perspective projection models, aslong as
assumption of the constant brightness is taken for granted. The methodshave
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been implemented and tested on pairs of real images. Unfortunately, the last two
methods give us only a finite subset of solution that usually includes good solu-
tion, but doesnt allow us to find this good solution among this subset. Exception
is the case of epipoles in infinity. The main reason for such result is inaccuracy
of assumption of constant brightness for smooth bodies. But outline andillumi-
nation characteristic points are not influenced by this inaccuracy. So, thefirst pair
of methods gives exact results.

Key Words: Level curves; Isophoto curves; Occluding contour; Homography; Epipo-
lar geometry; Smooth surfaces.

1 Introduction

Recovering a three-dimensional shape from a sequence of 2D images has many appli-
cations in areas as diverse as autonomous navigation, object recognition and computer
graphics. Solving this problem requires appropriate camera parameters and correspon-
dence between points in different images. Epipolar geometry plays a central role in
extracting correspondence between points in different images. For each point in one
image epipolar geometry determines a single line, called anepipolar line, in the other
image on which its corresponding point is incident.

This paper presents methods for determining the epipolar geometry of a pair of
images under weak (epipoles in infinity) and full perspective projection models. We
assume uncalibrated images of smooth surfaces. The pair of images may be taken from
any two viewpoints distant from each other as long as they satisfy the assumption of
constant brightness which presupposes that correspondingpoints in the different images
have the same value of intensity. This assumption holds whenthe reflectance model of
the imaged surface is independent of the viewpoint. We also discuss less general cases
such as the weak perspective projection model, calibrated cameras, and a setup similar
to the one suggested by [2], where the images contain a plane whose homography can
be computed.

Epipolar geometry is often represented by the fundamental matrix [3, 13, 4] The
standard method for recovering the epipolar geometry is that by computing the funda-
mental matrix from a set of corresponding features in the twoimages such as points
or lines (e.g., [6, 14, 13, 9, 16, 15]). However, for images ofsmooth surfaces which we
consider in this paper, reliable extraction of image features is often impossible.

The first pair of method gives exact result for real, practical images. The first method
is based on finding corresponding characteristic points created by illumination (ICPM).
The second method is based on correspondent tangency pointscreated by tangents from
epipoles to outline of smooth bodies (OTPM). The second method for recovering the
epipolar geometry of smooth objects is based solely on the objects outline (e.g., [1,
2, 8]). Such method is limited to either restricted motion orto a relatively rich scene
with sufficient number of special points along the objects outline. The second pair of
methods is general and independent of the occluding contourand the camera motion.
However, in these methods a significantly larger space search must be considered, so it
can work only when the assumption of constant brightness is satisfied.
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The second pair of methods offered by us termed as CCPM and CTPM is for search-
ing epipolar geometry for images of smooth bodies. The CCPM method is based on
searching correspondent points on isophoto curves with thehelp of correlation of cur-
vatures between these lines. The CTPM method is based on property of the tangential to
isophoto curve epipolar line to map into the tangential to a correspondent epipolar line
of isophoto curves. The standard method termed SM and based on knowledge of pairs
of the almost exact correspondent points was utilized for testing these two methods.

The main technical contributions of our method are following. The first one is an ef-
ficient method for finding correspondence between points of two closed isophoto curves
and finding homography, mapping between these two isophoto curves. Then this ho-
mography is corrected for all possible epipole positions with the help of the evaluation
function. A finite subset of solution is chosen from the full set given by all possible
epipole position. This subset includes fundamental matrices giving local minimums of
evaluating function close to the global minimum. Epipoles of this subset lie almost on
straight line directed parallel to parallax shift. CTPM method was used to find the best
solution from this subset.

The next contribution consists of bounding the search spacefor epipole locations.
On the face of it, this space is infinite and unbounded. We suggest a method to par-
tition the infinite plane into a finite number of regions (see Figure 1). The suggested
plane partition maintains desired resolution of the system, when possible. In addition, it
maintains a probabilistic equal hit measure of epipolar lines. Roughly speaking, proba-
bilistically the size of each subset of epipolar lines we assigned for each region is equal.
This property contributes to the efficiency of the search
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r2 

r3 

Fig. 1.A schematic drawing of the infinite plane partitioned into regions.

The rest of the paper is organized as follows. We begin by presenting the first pair
of method for recovering the epipolar geometry from a pair ofuncalibrated images of
smooth surfaces (Section 2). The next step is the second pairof methods (Section 3).
The method is presented for images taken under the perspective projection model. The
implementation of these method and the results of running correspondent algorithms
on real images are presented in Subsection 3.4. Finally we summarize and conclude in
Section 4.
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2 The first pair of exact methods.

2.1 Method of characteristic points of illumination intensity for smooth bodies
(ICPM)

For searching epipolar geometry corresponding points on two images are used. The
assumption of constant brightness was used. This means thatillumination intensity of
the corresponding points on the both images is identical. Usually the corresponding
points are some corner points of bodies. As on smooth bodies such points are lacking,
it is usually assumed that this procedure is not applicable.However, it is not absolutely
true. Though the corner points on smooth bodies are really lacking, illumination of
smooth bodies creates similar characteristic points. For example, even illumination of
a spherical body creates a point of maximum of illumination intensity which is easily
registered on a pair of the images. We will describe here all characteristic points which
illumination creates on smooth bodies.

1) A point of minimum of illumination intensity.
2) A point of maxima of illumination intensity.
3) A saddle point of illumination intensity.
4) A positive cusp (peak) point: a point with a high and positive value of a curvature

radius on a level curve of constant illumination intensity.
5) A negative cusp (peak) point: a point with a high and negative value of a curvature

radius on a level curve of constant illumination intensity.
6) A curvature point of inflexion: a point on a level curve in which change of the

sign of curvature radius occurs.
The characteristic points types 1-3 are searched as a point with zero derivatives

along axes x and y. Curvature in points 4-5 is searched by selection of a series of level
lines with some certain step on illumination intensities and searching on these lines of
extremes of a curvature radius with a value of curvature radius more than some chosen
threshold. For calculation of a curvature radius in points on a level curve the formula 1 is
used. Points of the type 6 are registered by changing of a signof a curvature radius. After
all characteristic points are discovered, it is necessary to discover their correspondence
for two images. It can be made by the following methods:

1) Corresponding points should have the same types described above.
2) They should have almost equal illumination intensity.
3) For corresponding points of 1-3 types the two principal curvature radiuses should

be close in values. (Curvature radiuses calculated for an illumination intensity surface
as functions of x and y in these points).

4) For corresponding points of 4-5 types curvature radii of alevel curve should be
close in values.

5) For corresponding points the nearest characteristic points along a level curve
should correspond to the similar points on the second image and have the same types
with them.

6) Comparing local neighborhoods of points, also as it is made in method SIFT
[10–12].

After determination of corresponding points their final correspondence and the epipo-
lar geometry is searched by the method RANSAC [7]. But it is better to use the specific
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version of this method [5]. It is appropriate for the case when the majority of the dis-
covered points can lie close to a single plane and only small part of these points is
considerably out of this plane. It is a frequent case for smooth bodies.

2.2 Implementation of the first method (ICPM) for real images

Numerical calculation demonstrates that the method SIFT [10–12] discovers many of
the characteristic points featured above (Figure 2).

Fig. 2.Correspondent points on two images.

In Figure 2 about 30 pairs of the corresponding points are marked by yellow color.
These points are found by SIFT method and part of them lie on smooth bodies (sculp-
tures). Butall these points on smooth bodies concern to one of 1-5 types of the char-
acteristic points featured above. Correspondence of the points was found by the 6th
method (from the six methods featured above). Numerical calculation shows that these
pairs of points give enough information to precisely calculate the epipolar geometry by
the usual methods. This result confirms efficiency of the described method. This effi-
ciency is explained by the fact that the characteristic points are found with split-hair ac-
curacy. Indeed, intensity of illumination along these bodes varies slowly and smoothly,
except for the cases of characteristic points featured above. It results in small errors for
the epipolar geometry.

2.3 Method of tangents to an outline of smooth bodies (OTPM)

However, there is one more method that has also split-hair accuracy - a method of
tangents to the outline of smooth bodies. (This method is discoursed in details in [1,
2, 8].) Let A be the tangency point of a tangent to a smooth bodies outline from the
epipole on the first image. And B is the tangency point of the correspondent tangent
to the correspondent outline of smooth bodies from the second epipole on the second
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image. It is proved in [8], [7] that these two points are correspondent points of the
images. Suppose that we have many smooth bodies and, consequently, many outlines
of smooth bodies. Then, by dividing image planes on meshes weconsider all possible
methods for putting epipoles to these meshes. It is possibleto find pair epipoles giving
the minimal error for the described property of tangents. The described method is very
similar to a method of tangents to level curves of illumination intensity described below
(CTPM). However, the method described here is much more exact than the method
described below. Really, level curves of illumination intensity are found insufficiently
precise both because of inexactness of assumption of constant brightness and because of
noise. This noise leads to major errors in definition of corresponding points, especially
for smooth bodes. Indeed, intensity of illumination along these bodes varies slowly and
smoothly, except for the cases of characteristic points featured above, and outlines of
smooth bodies. This fact results in the split-hair accuracyof the described here two
methods with respect to the two methods described below. In case of a small number of
smooth bodies, the described here method of tangents can be used only for validation
and improvement of the method of characteristic points or for only finding aset of
possible epipolar geometries.

The second pair of two methods described below (CCPM and CTPM; these methods
use level curves of constant illumination intensity) find corresponding points with much
bigger errors. It occurs because assumption of constant brightness is not exact. That
results in serious errors during finding epipolar geometry.Therefore, these methods can
be used only for validation and improvement of the present method, or only for finding
asetof possible epipolar geometries.

3 Two methods using level curves of illumination intensity

In this section we present our method for recovering the epipolar geometry of two
images, by determining the fundamental matrixF . (A pair of corresponding points in
the two images,x andx′, must satisfy toxFx′T = 0.) The purpose of methods stated
in this section is reconstruction of epipolar geometry of two 2D images of 3D smooth
bodies photographed from various positions. For finding epipolar geometry in a case of
non-smooth bodies we use correspondence of the reference points, such as corners, for
example. In case of smooth bodies these corner points are primely not present which
makes finding correspondence quite a problem to solve. Nevertheless, it can be tried to
be solved. A basis for this purpose is assumption of constantbrightness. It is supposed
that corresponding points in different images have one and the same value of intensity.
This assumption is proved for the following conditions [7]:

1) The Lambert law of reflections of surfaces.
2) An invariance of position and intensity of irradiating sources and also objects

position invariance during shooting.
3) A small angle between an optical axis and a direction on anyof object point, i.e.

the object should be near to the optical axis and have small angular sizes.
4) Constant interior camera calibration for both images.
It is necessary to note that because of infraction of these requirements and also be-

cause of presence of noise the assumption of constant brightness is carried out very
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approximately. It creates all further problems. The curve wherein all points have iden-
tical intensity is called an isophoto curve. Correspondence of reference points as was
in the case of non-smooth bodies, is exchanged by correspondence isophoto curves for
smooth bodies. We shall see further that the same inexactness of assumption of constant
brightness leads to similar problems in the next methods too

3.1 Description of the two methods for finding correspondence and
reconstruction of epipolar geometries.

The first method presented by us allows passing from correspondence isophoto curves
to correspondence of points on these lines. We shall call this method CCPM. For find-
ing this correspondence we shall use closed isophoto curves. Generally lines on object
of shooting which image are isophoto curves, they are complicated space curves. How-
ever, in a large number of practical cases all points of such curve almost lie in the same
plane and, accordingly, connection between isophoto curves on various images is very
close to homography. In this case homography cusp transfersin cusp, and the inflection
point transfers in an inflection point. Accordingly, for thecomposite curve with strongly
varying curvature there is a correlation between quantities of curvature in the correspon-
dent points. Moreover, in the majority of practical cases homography between isophoto
curves is very close to the similarity of transformation including translation, rotation
in plane and scaling. Curvature of curves in the correspondent points is identical up
to constant for similarity transformation. For finding isophoto curves, curvature in any
point is not necessary to be searched for the shape of this line. There is a simple for-
mula allowing finding curvature on the basis of intensity distribution in a neighborhood
of this point:

k = −div

(

▽φ

| ▽ φ|

)

(1)

, wherek is curvature of isophoto curve andφ is intensity.
Assuming that correspondence between isophoto curves is close to similarity trans-

formation, choosing complicate closed isophoto curves with strongly changing curva-
ture k and carrying out rescaling by multiplying curvature on length of the curve (the
formula 2, 3) we can find correspondence between these curves.

kr = k × L (2)

A mean value of rescaled curvaturekr doesnt depend on lengthL of the curve

kr
mean=

1

L

∫ L

0

kr dl =
1

L

∫ L

0

k × Ldl =

∫ L

0

k dl =

∫ 2π

0

dϕ = 2π (3)

It can be achieved by finding correlation between two functions: the rescaled cur-
vaturek × L as functions of the rescaled distancer

L from the some point on some
chosen isophoto curves, and the similar function for the correspondent isophoto curve
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where the rescaled distances are calculated from a some chosen correspondent point
on this correspondent isophoto curve. Some correspondencebetween these two points
which gives the maximum of correlation of these two functions is considered as cor-
rect correspondence. Other correspondent points are on theidentical rescaled distances
from the already found pair of correspondent points. That isthe property of similarity
transformation. It is also necessary to note that all the above-mentioned concerns to the
smoothed image and functions; otherwise the noise disturbsall correlations. I.e. it is
required to use filtration of images before searching isophoto curves and filtration of
functions for the rescaled curvature for searching maximumof correlation.

For testing of correspondence instead of function of the rescaled curvature in cur-
rent point, the rescaled distance from a centre of gravity for current point can be used.
Such function should give a maximum of correlation approximately under the same
requirements as the function of the rescaled curvature. Choosing various pairs of cor-
respondent isophoto curves, we get a set of correspondent points. The problems is that
for any alone smooth body all these points lie in very close toalmost parallel planes.
These planes lie on almost identical distance from the camera, i.e. the parallax will be
very small, and the fundamental matrix determining epipolar geometry will be defined
ambiguously. To solve this problem, we chose two smooth bodies located on various
distance from the camera, and the parallax is large enough for isophoto curves on these
bodies. It is necessary to note, that this correspondence between points is found on the
basis of assumption about similarity and, hence, is not exact. These errors are added to
the errors caused by inexactness of assumption of constant brightness. Therefore, the
fundamental matrix received by conventional methods on thebasis of these pairs of the
correspondent points is far from its true value. For finding its more precise value it is
necessary to involve additional reasons. First of them is connected with the fact that
in most cases points of a 3D-prototype isophoto curves usually lie almost in the same
plane. Accordingly, connection between isophoto curves, as we already noted above,
is close to homography. Knowing pairs of the correspondent points, we can find3 × 3
matrix homographyH, linking these pairs of points. For this purpose a normalized DLT
algorithm is used [7]. The result can be improved by minimization of the function de-
termined as the sum of absolute values of distances between homographic mappings of
isophoto curve points to nearest points on correspondent isophoto curve. Then this sum
is added to the sum, received by the same way but two images areinterchanged, and
mean value of these errors is calculated:

S =

(

N
∑

i=1

(

min
j

d(x′
j ,Hxi) + min

j
d(xj ,H

−1x′
i)

)

)/

2N

(4)

, whered(a,b) = ((a1/a3 − b1/b3)
2 + (a2/a3 − b2/b3)

2)1/2

Whered is distance between points with homogeneous coordinates,xi, x′
i are ho-

mogeneous vectors of correspondent points on isophoto curves. Pointsxi are on the
first image, pointsx′

i are on the second image. N - number of pair of correspondent
points,H- evaluated homography between closed isophoto curves. Making value of a
corner element of matrixH(3, 3) equal to unity, we search for the local minimum of
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function defined by formula 4 with respect to other elements of this matrix. For the
initial iteration the value of matrixH will be used which is already found above by nor-
malized DLT algorithm. For search of the local minimum we usestandard function of
MATLAB packagefminsearch().The received minimal value of function defined by
formula 4 , we shall denote asSmin. It is necessary to note that resulting homography
is found by non-exact methods and, accordingly, also is not exact.

Suppose that we know homogeneous coordinates of epipole on the second image.
Using also the homography found above, we can calculate a fundamental matrix from
the following formula:

F = [e′]×H

(5)

where[e′]× =





0 −e′3 e′2
e′3 0 −e′1
−e′2 e′1 0





Wheree′ - is a homogeneous vector of epipole on the second image, H is some
homography between two images. For search of candidates in epipole we divide the
plane into a finite number of regions as it is described in the second part of this section.
In each region we select just one epipole. Lets choose a function for evaluation of
quality of a fundamental matrix. We will map each point on thefirst image to an epipolar
line in the second image. Then we shall calculate the absolute value of distance from
the correspondent point on the second image to this epipolarlines. We shall take the
sum of all these distances, and then we shall add this sum to the similar sum received
by the same way but with interchange of images. Then we shall find the mean value for
components of these sums.

Z =

(

N
∑

i=1

(

dl(x
′
i, Fxi) + dl(xi, F

T x′
i)
)

)/

2N

(6)

, wheredl(x, l) = (
|xTl|

x3

√

l21 + l22
)

Wheredl distance between a point with homogeneous coordinates and an epipolar
line,xi, x′

i are homogeneous vectors of correspondent points on isophoto curves. Points
xi are on the first image, pointsx′

i are on the second image. N - number of pair of
correspondent points,F - evaluated fundamental matrix. Choosing some candidate in
epipole and having taken as initial value for homography matrix H found as described
above by minimization with help formula 4, we can carry out further iterations for and
find a local minimum of the function described by the formula 6.

Found homography will be more precise then its initial value, because initial ho-
mography was only the first approximation. In order not to runtoo far from initial
homography, we shall assume that deviation S determined by the formula 4 cannot be
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more then1.5Smin whereSmin is its minimal value found above. It can be achieved
by introduction of the additional term in the formula 6 equalto zero forS < 1.5Smin
and fast increasing forS > 1.5Smin. Search of a local minimum can be carried out
with use of the above mentioned function of MATLAB packagefminsearch().For
each candidate in epipole with the number i we find optimum fundamental matrixFi.
The best of them can be defined as giving a minimum of function 6. We shall term this
minimum value asZmin.

Unfortunately, since the found pairs of the correspondent points are only approxi-
mate, the minimum of function 6 can not give the true value of afundamental matrix.
To improve the result we can take not alone fundamental matrix relevant toZmin, but
all local minimums of functionZ (Fi) from argument i (epipole correspondent to i=1
is in the center of image and run away from center to maximal allowed distance along
spiral curve for largeri (yellow spiral on figure 8(h)) ) , where i is a serial number of
epipole. From all found local minimums we choose only thatZ < 1.34Zmin, where Z
is calculated from formula 6.

It will give us not hust one solution but a large set of candidates for the solution.
For finding of the best of them the second reason and the secondmethod of search of a
fundamental matrix which we shall term CTPM can be used. It isbased on the following
property of epipolar geometry that is correct for assumption of constant brightness:
epipolar line tangential to isophoto curves maps to epipolar line, is also tangential to
correspondent isophoto curves. To evaluate how precisely this property carried out, we
can introduce the following function:

Z =

(

N1
∑

i=1

min
j∈M ′

i

dl(y
′tangent
j , Fxi) +

N2
∑

i=1

min
j∈Mi

dl(y
tangent
j , FT x′

i)

)/

(N1 + N2)

(7)

, wheredl(x, l) = (
|xTl|

x3

√

l21 + l22
)

Wheredl distance between a point with homogeneous coordinates and an epipolar
line,xi, x′

i are homogeneous vectors of globalmaximum points of intensity on epipolar
lines. Pointsxi are on the first image, pointsx′

i are on the second image.N1 - number

of points on first image that have correspondent tangent pointsy
′tangent
j on the second

image with respect to condition described below.N2 - number of points on second

image that have correspondent tangent pointsy
tangent
j on the first image with respect to

condition described below.F - evaluated fundamental matrix. Lets choose a certain set
of epipolar lines on the first image transiting through a smooth body.We shall consider
intensity along pieces of epipolar lines lying inside the image of a smooth body. Points
of extremum give us a point of tangency epipolar line with theisophoto curve. We
shall choose some epipolar line, and among points of extremum we shall choose a
global maximum. We shall find the correspondent epipolar line on the second image.
Also we shall find all isophoto curves on the second image having the same quantity of
intensity, as in the point of a global maximum found above on the first image. Lets carry
out all possible tangential to these isophoto lines from epipole on the second image.
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Among all points of a tangency we shall choose what is closestto epipolar line and
we shall find its distance to the epipolar line. We shall make the same calculations for
all epipolar lines, and then we shall calculate the sum of allfound distances. Then we
shall find the similar sum, by images interchanging. Then we shall add together these
sums and then we shall calculate the mean value of distance. Thus, we get evaluation
for precision of performance of the tangential epipolar lines property described above.
However, the algorithm as described above works with big outliers. Actually, among all
points of a tangency found on the second image should there isa point correspondent
to a global maximum on the first image. Its distance to the correspondent epipolar line
gives a current error of a method. Other points of tangency can improve only the result
and reduce an error if one of them lies closer to epipolar lines, than this true point of
tangency. However, the situation is much more difficult. Thetrue point of tangency
can in general miss on the second image. It can be closed by others parts of smooth
bodies or can be not found because of an error in assumption ofconstant brightness.
In this situation a point of tangency the closest to epipolarlines can lie very far from
this epipolar line because it has no relation to the true tangency correspondent point.
Such tangency point consequently gives outlier to evaluated function. To prevent such
situation, we offer the following method. We shall take outline curves on the first and
second image. We shall find homography, mapping these curvesby the same method
which we found homography, mapping isophoto curves. We shall find with help of this
homography on the second image mapping of a global maximum point, defined above
and we shall consider a small circular neighborhood around this mapping (3 percents
from the area occupied with a smooth body projection on the second image)(figure 3).

The true point of tangency should lie in this neighborhood. Therefore, we shall
view only the points of a tangency lying in this neighborhood. If any point of tangency
in this neighborhood is not present, we throw out this case from our consideration. This
method will prevent appearance of outliers in evaluated function. The similar method
can be used for search correspondent isophoto curves. Actually, if we have one isophoto
curve on the first image, it usually corresponds to not alone but several isophoto curves
on the second image. Which one of them to choose? The one which is closest to a
homographic mapping of the first image isophoto curve. We usehomography received
from outline curves. We can use the above described CTPM evaluation method that
excludes outliers to evaluate all possible fundamental matrixes and choose the one what
gives the minimal error. However, it is a too long way. For testing by the second CTPM
method we shall choose only those fundamental matrixes which have passed the filter
of the first CCPM method. Thus, we get a final evaluation of fundamental matrixes.
Precision of this evaluation is restricted only to precision of assumption of constant
brightness.

3.2 Searching for epipoles

In this section we present a partition of the infinite plane into a finite number of regions.
All points in a given region will be treated, under this partition, as a single epipole.
Therefore, all lines intersecting a given region will be members of its epipolar line
set. As we explained below, the size of each region is proportional to its location with
respect to the image.
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Fig. 3.Finding correspondent tangential point.

Our plane partition is defined by concentric circles with a set of radii{ri}
k
i=1, where

ri ≥ ri+1 for each1 ≤ i ≤ k andr1 = ∞. The center of these circles is the image
center. Let each region be defined by the 4-tuple,(θ, δθi, ri, ri+1), whereθi andθi+δθi

are two angles, andri andri+1 are two radii (see Figure 1). The parameters of this
partition are the set ofr′is and the set ofδθ′is. For a given ring, there are two degrees of
freedom to define the set of regions in that ring: the ring length, ri−ri+1 and the region
width,δθi. These parameters are set so that the partition maintains the system resolution
and the equal hit measure. Later we define these two properties. For simplicity, we
assume a circular image with radius of one.

System resolution: Any vision system is limited by the accuracy of the measurements.
We definesystem resolutionto beγ if it does not discriminate between two image lines
passing through a point when the difference in the line directions isγ0 ≤ γ.

We say that the partition maintains the system resolution when the system cannot
discriminate between two candidate epipoles which are located in the same region.
Formally, Assume the system resolution is . LetG be a given region ande1,e2 ∈ G
be two points (see Figure 4 ). Letl1 andl2 be two lines connecting an image pointq

and the two pointse1 ande2, respectively. When the angle betweenl1 and l2 is less
than the system resolutionγ, the system cannot discriminate between these lines. More
generally, for a given regionG we defineαG(q) to be the maximal angle between the
image pointq and any two points in the region. LetαG = max

q∈Image
αG(q) then the

system resolution is maintained for G.
Note that the system resolution cannot be maintained in regions which overlap the

image or are very close to the image. The closer the point q is to the regionG the larger
αG(q) becomes. In particular whenq ∈ G thenαG(q) = 2π.

Hit measure: Roughly speaking, the equal hit measure property guarantees that the
number of epipolar lines considered for each region is probabilisticly equal. We de-
fine the hit measure of a region,HM(G), to be the probability of a random epipolar
line intersecting a regionG. Each candidate epipolar line we consider is defined by an
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Fig. 4. q is an image point,e1 and e2 are two points in a given regionG. The angleβ =
acos((e1 − q)(e2 − q)T /||(e1 − q)||||e2 − q||). If β < γ whereγ is the system resolution,
then the system cannot discriminate between the epipolese1 ande2.

image point and a single direction. We assume that these epipolar lines are generated
by a uniform distribution of points in the image and uniform distribution of directions.
Formally, the following integral computesHM(G).

HM(G) =
1

2π

∫∫

x2+y2≤1

αG(x, y)dxdy (8)

By changing the integral variables fromx and y to the polar coordinates of the
image points,φ andr, we obtain:

HM(G) =
1

2π

∫ 1

0

∫ 2π

0

rαG(r cos(φ), r sin(φ))dφdr (9)

(r is the determinant of the Jacobian of the exchange variables).
In order to have a probabilistically equal number of points in each region, we would

like HM(G) to be identical for all regions.

In the Appendix we describe how to set the partition parameters, ri andδθi, in or-
der to maintain the above conditions. We distinguish between three types of regions
which we analyze separately. They include infinite regions on the outermost ring, re-
gions within the image and close to the image such that the system resolution condition
cannot be maintained and intermediate regions. The parameters depend on the desired
resolution of the system,γ.

3.3 Functions for testing of correspondence.

Lets assume that we have some fundamental matrix. We shall introduce three ways of an
evaluation as far as it is close to the true fundamental matrix. The first evaluation shall be
termed CCPM. It is based on a set of the correspondent points found from correlation of
curvatures for isophoto curves and given by the formula 6. The second evaluation shall
be termed CTPM by us. It is based on property of the tangentialto isophoto curves
epipolar lines to map also into the tangential to correspondent isophoto curves epipolar
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line and is given by the formula 7. The third evaluation shallbe termed SM. It is based
on a set of almost precise correspondent points received by covering smooth bodies
with a fabric with a texture of a chess board (figure 5). Then wephotograph pair of
images of this fabric from the same points of shooting from which images of smooth
bodies have been received also. Evaluated function is givenby the following formula:

B =

(

N
∑

i=1

(

dl(z
′
i, Fzi) + dl(zi, F

T z′i)
)

)/

2N

(10)

, wheredl(x, l) = (
|xTl|

x3

√

l21 + l22
)

Wheredl is distance between a point with homogeneous coordinates and an epipolar
line, zi, z′i are homogeneous vectors of correspondent points on fabric with a texture
of a chess board. Pointszi are on the first image, pointsz′i are on the second image.
N - number of pair of correspondent points,F - evaluated fundamental matrix. From
this almost precise set of the correspondent points by a method of the normalized 8-dot
algorithm (for number of pointsn > 8) [2]. almost precise fundamental matrix can be
received. We shall term this third standard method for fundamental matrix finding as
SM.

Fig. 5.Covering smooth bodies with a fabric with a texture of a chess board.

3.4 Implementation

For testing of algorithms nine pairs of images of a pair of smooth bodies have been
made. A female head and a female bust were used as smooth bodies. Accordingly, we
have nine various cases of algorithms implementation. Images differ with an arrange-
ment of the camera position or an arrangement of smooth bodies. In cases 3,4, and 6
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two subcases are chosen, distinguished by a choice of isophoto curves on the basis of
which calculation of the correspondent points by a CCPM method was made. As result
of use of this method we get a finite set of candidates for a roleof a fundamental matrix
as it has been described earlier in Section 3. For each of cases or subcase, eight figures
are given:

1) In the first figure we can see a set of almost precisely correspondent points and a
set of correspondent to them epipolar lines of a fundamentalmatrix received by almost
precise SM method.

2) In the second figure we can see a set of almost precisely correspondent points
and a set of correspondent to them epipolar lines of a fundamental matrix. This matrix
is one component of the complete set of candidates on the fundamental matrix, received
by a CCPM method. SM evaluation gives a minimum for this matrix among all matrices
of this set.

3) In the third figure we can see a set of almost precisely correspondent points and a
set of correspondent to them epipolar lines of a fundamentalmatrix. This matrix is one
component of the complete set of candidates on the fundamental matrix, received by a
CTPM method. CTPM evaluation gives a minimum for this matrixamong all matrices
of this set.

4) In the fourth figure we can see a set of almost precisely correspondent points and
a set of correspondent to them epipolar lines of a fundamental matrix. This matrix is one
component of the complete set of candidates on the fundamental matrix, received by a
CCPM method. CCPM evaluation gives a minimum for this matrixamong all matrices
of this set.

5) In the fifth figure we can see a set of the correspondent points lying on corre-
spondent isophoto curves and received by a CCPM method.

6) In the sixth figure we can see CCPM evaluation for a fundamental matrix as
function of the epipole number. This epipole located on the second image. All epipoles
lie in regions; the method of division into these regions is described in the Section 3.
The first epipole lies at center of a figure and with increase ofthe number moves from
center along spiral figured by yellow color in the eighth figure. Fundamental matrixes
are received by a CCPM method. Red asterisks designate the set of candidates giving
the best CCPM evaluation.

7) In the seventh figure we can see CTPM, CCPM and SM evaluationfor a set of
the candidates marked by red asterisks in the sixth figure. The asterisks lying on curves,
mark points of a minimum. The asterisks not lying on curves and located after graphics
mark CTPM, CCPM and SM evaluation for almost precise fundamental matrix. This
matrix is received by a SM method.

8) In the eighth figure by red daggers are marked centre and edges of the second
image. The yellow spiral connects regions in which we place epipoles. Epipoles are lo-
cated along this spiral, since center of the image. By red asterisk it is designated epipole
on the second image of almost precise fundamental matrix received by a SM method.
Red, green and blue circles are designated epipoles, correspondent to the fundamen-
tal matrixes minimizing a CTPM, CCPM and SM evaluation function among a set of
candidates, received by a CCPM method and marked by red asterisks in the sixth figure.

Case1.
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Case1 includes the following figures: figure 8(a)(b)(c)(d)(e)(f)(g)(h).
Case2.
Case2 includes the following figures: figure 9(a)(b)(c)(d)(e)(f)(g)(h).
Case3a.
Case3a includes the following figures: figure 10(a)(b)(c)(d)(e)(f)(g)(h).
Case3b.
Case3b includes the following figures: figure 11(a)(b)(c)(d)(e)(f)(g)(h).
Case4a.
Case4a includes the following figures: figure 12(a)(b)(c)(d)(e)(f)(g)(h).
Case4b.

Case4b includes the following figures: figure 13(a)(b)(c)(d)(e)(f)(g)(h).
Case5.
Case5 includes the following figures: figure 14(a)(b)(c)(d)(e)(f)(g)(h).
Case6a.
Case6a includes the following figures: figure 15(a)(b)(c)(d)(e)(f)(g)(h).
Case6b.
Case6b includes the following figures: figure 16(a)(b)(c)(d)(e)(f)(g)(h).
Case7.
Case7 includes the following figures: figure 17(a)(b)(c)(d)(e)(f)(g)(h).
Case8.
Case8 include follow figures: figure 18(a)(b)(c)(d)(e)(f)(g)(h).
Case9.
Case9 includes the following figures: figure 19(a)(b)(c)(d)(e)(f)(g)(h).
For these figures:
(a) the set of exact correspondent points (almost exact set found from the chesslike

fabric) and epipolar lines found from a fundamental matrix,received by the SM from
these points

(b) the set of exact correspondent points and epipolar lines found from a funda-
mental matrix. This matrix gives a minimum error for set of epipoles candidates defined
on figure f (Red asterisks) and for the exact set of correspondent points.

(c) the set of exact correspondent points and epipolar lines found from a funda-
mental matrix. This matrix gives a minimum error for set of epipoles candidates defined
on figure f (Red asterisks) and for the correspondent points set defined by the CTPM
and current epipoles.

(d) the set of correspondent points (almost exact set) and epipolar lines found from
a fundamental matrix. This matrix gives a minimum error for set of epipoles candidates
defined on figure f (Red asterisks) and for the correspondent points set defined by the
CCPM.

(e) the set of the correspondent points lying on correspondent isophoto curves and
received by the CCPM.

(f) the error of a fundamental matrix as function of the epipolesset index. These
epipoles located on the second image. All epipoles lie in regions; the method of division
into these regions is described in the Subsection 3.2 . The first epipole lies at center of a
figure and with increase of the index moves from center along spiral figured by yellow
color in the figure h. Fundamental matrixes are received formthe CCPM correspondent
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points sets and current epipoles positions. Red asterisks designate the set of candidates
giving the minimal local errors.

(g) errors of fundamental matrices as a function of index in subset of the can-
didates to epipoles marked by red asterisks in figure f. The fundamental matrices are
found from current candidates to epipoles and correspondent points sets(set defined by
the CTPM and current epipoles(red line), set defined by CCPM (green line) and exact
set (blue line)). Errors are calculated with respect to the same relevant correspondent
points sets. Asterisks on the lines mark minimums. The threeasterisks (not lying on
curves and located after graphics) mark error of the exact fundamental matrix. The ex-
act fundamental matrix is found by SM from the exact set of correspondent points.
Errors are found for sets of correspondent points (set defined by the CTPM and ex-
act epipoles (red asterisk), set defined by CCPM (green asterisk) and exact set (blue
asterisk)).

(h) marked by red daggers are the center and edges of the second image. The
yellow spiral connects regions in which we place epipoles. Epipoles are located along
this spiral, from center of the image. Designated by red asterisk is the epipole on the
second image from exact fundamental matrix received by the SM. Rosy points mark the
set of epipoles candidates. This set is received by the CCPM and marked by red asterisks
in figure f. Circles are designated epipoles, correspondentto the fundamental matrixes,
witch are correspondent to minimum errors (between all rosypoints) for CTPM (red
circle), CCPM (green circle) and exact (blue circle) correspondent points sets.

From the given figures it is possible to draw the following conclusions:

1) The CCPM method gives the full set of candidates on the truesolution. Epipoles
of these matrixes lie approximately on straight line. What isthis straight line? We
shall take homography (relevant to evaluation Smin in a CCPMmethod) between two
isophoto curves, lying on a sculpture of the female head on two images. We use this
homography to find on the second image mapping of isophoto curve belonging to a
bust on the first image. This mapping is shifted with respect to correspondent isophoto
curve belonging to a bust on the second image, because of a parallax. The direction of
this shift gives us the required straight line.

2) Almost always (in 10 cases from 12, and besides two bed subcases actually cor-
responding to the same pair of pictures) among set of solutions found by CCPM method
there is a solution which is very close to the almost precise solution received by a SM
method. This solution gives minimum of a SM evaluation for this set.

3) The solutions correspondent to a minimum of a CTPM or CCPM evaluations for
this set, less than in 50 percents of cases are close to almostprecise minimum (in 5
cases from 12 for CTPM and in 3 cases from 12 for a CCPM evaluation).

4) CTPM or CCPM evaluations for almost precise solution, received by the SM
method are not in minimum while SM evaluation always corresponds to a minimum.
These three (CTPM, CCPM and SM) evaluations for SM method solution are compared
to similar evaluations for the set solution received by CCPMmethod.
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4 Summary and discussion

We present four methods for recovering the epipolar geometry from images of smooth
surfaces. The existing methods for recovering epipolar geometry use corresponding fea-
ture points that cannot be found in such images. The first method is based on finding
corresponding characteristic points created by illumination (ICPM illumination charac-
teristic points method). The second method is based on correspondent tangency points
created by tangents from epipoles to outline of smooth bodies (OTPM outline tangent
points method). These two methods are exact and give correctresults for real images,
as positions of the corresponding illumination characteristic points and corresponding
outline are known with small errors. But the second method islimited either to special
type of scenes or to restricted camera motion.

The level curves of constant illumination intensity (used for the second pair of meth-
ods) are found precise but insufficiently both because of inexactitude of constant bright-
ness assumption and because of noise. This noise leads to major errors in definition
of corresponding points found from the level curves especially for smooth bodes. In-
deed, illumination intensity along these bodes varies slowly and smoothly, except for
the cases of illumination characteristic points used for the first method, and outlines of
smooth bodies. This fact results in the split-hair accuracyof the described here first pair
of methods with respect to the second pair of methods described below. In case of a
small number of the smooth bodies, the second method of tangents can be used only
for a validation and an improvement of the method of characteristic points or for only
finding asetof possible epipolar geometries.

Two more methods are also offered, named CCPM and CTPM, for searching epipo-
lar geometry of images of smooth bodies. The CCPM method is based on search of
correspondent points on isophoto curves with the help of correlation of curvatures be-
tween these lines. The CTPM method is based on property of thetangential to isophoto
curve epipolar line to map into the tangential to correspondent isophoto curves epipolar
line. The standard method termed SM and based on knowledge ofpairs of the almost
exact correspondent points, has been used for testing of these two methods. From dis-
cussion of results of these methods in Section 3.4 we can conclude that these methods
for searching epipolar geometries allow us to find in most cases only a set of the so-
lutions containing the solution close to the true solution,but do not allow us to find
this good solution among this set. An exception is given for acase when epipoles lie
in infinity (that truly, for example, for translation of the camera parallel to plane of the
image and in for some other cases). Since epipoles for all solution of chosen set lie
approximately on one straight line (a direction of a parallax) in a case epipoles on in-
finity, their position is determined uniquely by direction of this straight line. The reason
of ambiguity in other cases is generally defined by the errorsimported by inexactness
of assumption of constant brightness. An additional error is also imported with inex-
actness of a CCPM method, but it is not the main reason of our problem. Among the
found (by CCPM method) set almost always there is a solution close to precise, but it
can not be found with the help of a CTPM evaluation because of the errors imported by
inexactness of assumption of constant brightness.
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Appendix: Setting the partition parameters

Further we describe how to set the partition parameters,ri andδθi, in order to maintain
the system resolution and the equal hit properties. We distinguish between three types
of regions: regions on the outermost ring, regions within the image and close to the
image such that the system resolution condition cannot be maintained and intermediate
regions. The parameters depend on the desired system resolution, γ.

Outer ring regions: For regions in the outer ring the epipolar lines are almost parallel.
In this case the regions are defined such that,r1 = ∞ andG1i = (θi, δθ,∞, r2). We
next show that it is possible to chooser2 andδθ andδθ such that the region,G, satisfies
the system resolution.

Image
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Fig. 6.This figure shows a region in the outermost ring,G. The maximal angle between an image
point and two points in the region,αG, is obtained at one of the two image pointsq1 or q2. The
pointq1 is the intersection of the image circle with the angle bisectorδθ. The pointq2 is a point
on the image circle such that the tangent to the image circle throughq2 passes throughp1.

Using trigonometric considerations, it can be shown that for an outer ring region,G,
the maximal angle between an image point and two points in theregion,αG, is obtained
at one of the two image pointsq1 orq2 as illustrated in Figure 6 (the point at which the
maximum is obtained depends onr2 andδθ). We next define these points. Let t1 and
t2 be the rays that define an outer region, G. Letp1 andp2 be the delineating points of
the region (the intersection points of the region rays and the circler2). The pointq1 is
the intersection of the image circle with the bisector of theangleδθ. The pointq2 is the
intersection point of the image circle with the tangent fromthe pointp1 to the circle .
It can be shown using trigonometric considerations thatαG = max(αG(q1), αG(q2))
where

αG(q1) = 2tg−1(
r2 sin( δθ

2 )

r2 cos( δθ
2 ) − 1

) and αG(q2) = δθ + sin−1(1/r2) (11)

It is therefore possible to set one of the two variables,r2 or δθ, and compute the
other variable such thatαG < γ whereγ is the system resolution. In our system we set
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δθ1, and solve forr2. The hit measure,HM(G), is then set to the value computed on
G (using formula 9). This value depends on the initial choice of δθ1.

Intermediate regions: Two parameters define an intermediate region,ri+1 andδθ. We
next show how to define these parameters based on the system resolution,γ , and the
hit measure,HM(G). Similarly to the outer ring case, at an intermediate ring region
G, αG = max(αG(q1), αG(q2)), whereq1 is defined as in the outer region case, and
q2 will be defined next.
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Fig. 7.This figure shows an intermediate region,G. The pointq2 satisfies that the circumscribed
circle of the pointsp1,p4 andq2 is tangent to the image bounding circle. The angleαG(q2) =
p1,q1,p4 is maximal for all image points which are outside the circular section definedby δθ.

Let Cimage be the set of image points on the image bounding circle, outside the
image section defined byθi andδθ. It can be shown thatαG(q2) = max{αG(q)|q ∈
Cimage}, if the circumscribed circle of the pointsp1,p4 andq2 is tangent to the image
bounding circle (see Figure 7). This is true since at this point the circumscribed circle
has the smaller radius, and therefore the angle6 (p1,q1,p4) is maximal (by the sine
theorem). It is now possible to write down the equations thatdefineq2. Let m be the
circumscribed circle center ofq2,p1,p4. Assume that the image center is at(0, 0) and
the image radius is one, in this case,||p1|| = ri+1, ||p4|| = ri, andq2 = m

||m|| . Under
this setup the radius of the circumscribed circle and the anglesδθ andγ are given by:

cos(δθ) = p1p4
T

||p1||||p4||

cos(γ) = (p1−q)(p4−q)T

||p1−q||||p4−q||

||p1 − m|| = ||p4 − m|| = ||m|| − 1

(12)

Given ri andγ and one of the region parametersri+1 or δθ it is possible to solve
these equations for the other parameter, as long asri+1 is large enough. The region
must also satisfy the equal hit measure, which is defined in formula 9. Our system solves
these non linear equations by numerical methods yielding values of the parametersri+1

andδθi.
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Inner regions : In the inner regions, the system resolution constraint cannot be main-
tained. We can only maintain the equal hit measure. We therefore have only one con-
straint. We set one of the unknown parameters,ri+1 andδθi, arbitrarily, and solve for
the other one. In our system we setδθi to be a constant equal to the last computed value,
and solve forri+1.
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