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Abstract—The paper deals with the error analysis of
a navigation algorithm that uses as input a sequence
of images acquired by a moving camera and a Digital
Terrain Map (DTM) of the region been imaged by the
camera during the motion. The main sources of error
are more or less straightforward to identify: camera
resolution, structure of the observed terrain and DTM
accuracy, field of view and camera trajectory. After
characterizing and modeling these error sources in the
framework of the CDTM algorithm, a closed form
expression for their effect on the pose and motion errors
of the camera can be found. The analytic expression
provides a priori measurements for the accuracy in
terms of the parameters mentioned above.

I. Introduction

This paper deals with the error analysis of a navigation
algorithm that uses as input a sequence of images acquired
by a moving camera and a Digital Terrain Map (DTM) of
the region been imaged by the camera during the motion.
It was shown in a previous work that if the navigation
solution (position, velocity and attitude) is approximately
known, then the optical flow computed from two image
frames can be solved together with the DTM to produce
an improved navigation solution. The algorithm was called
CDTM since it deals with feature correspondence and
a DTM. As opposed to other existing approaches, the
algorithm does not require 3D reconstruction or landmark
identification. Synthetic and laboratory experiments using
a robot and a terrain model were used to demonstrate
the algorithm. During the demonstration stage, several
parameters of the imaging system and the DTM were
assumed, and some of them were also varied for testing
the sensitivity of the algorithm. It was clear that if one
of the parameters, e.g., the field of view, is severely
compromised, then the algorithm did not generate a good
quality solution. A more generic tool was desirable to show
under which circumstances the CDTM algorithm would
produce reasonable results and under which the solution
would break down. The error analysis presented in this
paper provides this tool. The main sources of error are
more or less straightforward to identify:

• Camera resolution. Since the algorithm is based on
feature correspondence, the camera resolution affects

the accuracy in computing each correspondence con-
straint.

• Structure of observed terrain and DTM accuracy.
As any other algorithm for terrain navigation, the
algorithm requires terrain variability. The results are
naturally affected by the accuracy of the available
data base.

• Field of view. In order to compute an accurate solu-
tion, a sufficiently rich geometry should be available,
similar to the GDOP considerations of GNSS naviga-
tion. The field-of-view of the camera is critical in this
respect.

• Camera trajectory. Since the algorithm is based on
the variations between the two consecutive frames
under study, these variations should be large enough
to provide a good signal-to-noise ration.

One of the main results of the present paper it to
establish that after characterizing and modeling the error
sources in the framework of the CDTM algorithm, a closed
form expression can be found for their effect on the pose
and motion errors of the camera. The analytic expression
provides a priori measurements for the accuracy in terms
of the parameters mentioned above. Furthermore, the
result was confirmed by using extensive numerical simula-
tions. The main conclusion of this paper is to establish
under which generic scenarios the CDTM algorithm as
formulated before can be expected to generates accurate
estimates for improving a navigation solution.

A. The CDTM Algorithm

Vision-based algorithms has been a major research issue
during the past decades. Two common approaches for
the navigation problem are: landmarks and ego-motion
integration. In the landmarks approach several features are
located on the image-plane and matched to their known
3D location. Using the 2D and 3D data the camera’s pose
can be derived. Few examples for such algorithms are [9],
[3]. Once the landmarks were found, the pose derivation
is simple and can achieve quite accurate estimates. The
main difficulty is the detection of the features and their
correct matching to the landmarks set.
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In ego-motion integration approach the motion of the
camera with respect to itself is estimated. The ego-motion
can be derived from the optical-flow field, or from instru-
ments such as accelerometers and gyroscopes. Once the
ego-motion was obtained, one can integrate this motion to
derive the camera’s path. One of the factors that make this
approach attractive is that no specific features need to be
detected, unlike the previous approach. Several ego-motion
estimation algorithms can be found in [1], [13], [2], [5]. The
weakness of ego-motion integration comes from the fact
that small errors are accumulated during the integration
process. Hence, the estimated camera’s path is drifted and
the pose estimation accuracy decrease along time. If such
approach is used it would be desirable to reduce the drift
by activating, once in a while, an additional algorithm that
estimates the pose directly. In [12], such navigation-system
is being suggested. In that work, like in this work, the drift
is being corrected using a Digital Terrain Map (DTM).
The DTM is a discrete representation of the observed
ground’s topography. It contains the altitude over the sea
level of the terrain for each geographical location. In [12] a
patch from the ground was reconstructed using ‘structure-
from-motion’ (SFM) algorithm and was matched to the
DTM in order to derive the camera’s pose. Using SFM
algorithm which does not make any use of the information
obtained from the DTM but rather bases its estimate on
the flow-field alone, positions their technique under the
same critique that applies for SFM algorithms [10].

The algorithm presented in this work does not require
an intermediate explicit reconstruction of the 3D world.
By combining the DTM information directly with the
images information it is claimed that the algorithm is well-
conditioned and generates accurate estimates for reason-
able scenarios and error sources. In the present work this
claim is explored by performing an error analysis on the
algorithm outlined above. By assuming appropriate char-
acterization of these error sources, a closed form expression
for the uncertainty of the pose and motion of the camera
is first developed and then the influence of different factors
is studied using extensive numerical simulations.

II.. Problem Definition and Notations

The problem of estimating a navigation solution using
image correspondence and a DTM (the C-DTM algorithm)
can be briefly described as follows: At any given time
instance t, a coordinates system C(t) is fixed to a camera
in such a way that the Z-axis coincides with the optical-
axis and the origin coincides with the camera’s projection
center. At that time instance the camera is located at some
geographical location p(t) and has a given orientation R(t)
with respect to a global coordinates systemW (p(t) is a 3D
vector, R(t) is an orthonormal rotation matrix). p(t) and
R(t) define the transformation from the camera’s frame
C(t) to the world’s frame W , where if Cv and Wv are vec-
tors in C(t) and W respectively, then Wv = R(t)Cv+ p(t).

Consider now two sequential time instances t1 and
t2: the transformation from C(t1) to C(t2) is given by

the translation vector ∆p(t1, t2) and the rotation ma-
trix ∆R(t1, t2), such that C(t2)v = ∆R (t1, t2) C(t1)v +
∆p (t1, t2). A rough estimate of the camera’s pose at t1
and of the ego-motion between the two time instances -
pE(t1) ,RE(t1), ∆pE(t1, t2) and ∆RE(t1, t2) - are supplied
(the subscript letter “E” denotes that this is an estimated
quantity).

Also supplied is the optical-flow field: {ui(tk)} (i=1. . . n,
k=1,2 ). For the i’th feature, ui(t1) ∈ IR2 and ui(t2) ∈
IR2 represent its locations at the first and second frame
respectively.

Using the above notations, the objective of the naviga-
tion algorithm is to estimate the true camera’s pose and
ego-motion: p(t1), R(t1), ∆p(t1, t2) and ∆R(t1, t2), using
the optical-flow field {ui(tk)}, the DTM and the initial-
guess: pE(t1), RE(t1), ∆pE(t1, t2) and ∆RE(t1, t2).

III.. Brief Review of C-DTM

Let WG ∈ IR3 be a location of a ground feature point
in the 3D world. At two different time instances t1 and
t2, this feature point is projected on the image-plane of
the camera to the points u(t1) and u(t2). Assuming a
pinhole model for the camera, then u(t1), u(t2) ∈ IR2. Let
Cq(t1)and Cq(t2) be the homogeneous representations of
these locations. As standard, one can think of these vectors
as the vectors from the optical-center of the camera to
the projection point on the image plane. Using an initial-
guess of the pose of the camera at t1, the line passing
through pE(t1) and Cq(t1) can be intersected with the
DTM. Any ray-tracing style algorithm can be used for
this purpose. The location of this intersection is denoted
as WGE . The subscript letter “E” highlights the fact that
this ground-point is the estimated location for the feature
point, that in general will be different from the true
ground-feature location WG. The difference between the
true and estimated locations is due to two main sources:
the error in the initial guess for the pose and the errors in
the determination of WGE caused by DTM discretization
and intrinsic errors. For a reasonable initial-guess and
DTM-related errors, the two points WGE and WG will be
close enough so as to allow the linearization of the DTM
around WGE . Let N be the normal of the plane tangent
to the DTM at the point WGE , and define the operators:

P(u, s) .=
(

I − usT

sTu

)
(1)

L =
q1N

T

NTR1q1
(2)

Then, after some algebra, the single-feature, two-frames
C-DTM constraint can be written [7]:

P(q2, q2) [p12 +R12L (GE − p1)] = 0 (3)

This constraint involves the position, orientation and the
ego-motion defining the two frames of the camera. Al-
though it involves 3D vectors, it is clear that its rank can
not exceed two due to the usage of P which projects IR3
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on a two-dimensional subspace. In a numerical implemen-
tation it is convenient to use a normalized version of (3):

P(q2, q2) [p12 +R12Li (GEi − p1)] /|C2G| = 0 (4)

A. Multiple Features
The C-DTM constraint can be written for each vector in

the optical-flow field. Since overall twelve parameters need
to be estimated (six for pose and six for the ego-motion),
at least six optical-flow vectors are required for the system
solution, although usually more vectors should be used
in order to define an over-determined system. Since the
constraints are non-linear, an iterative scheme is required
to find a solution. A robust algorithm which uses Gauss-
Newton iterations and an M-estimator is described in
[8].In the current implementation, a Levenberg-Marquardt
method is used whenever Gauss-Newton fails to converge
after several iterations. More specifically, suppose that
n feature points are tracked in two frames, so that the
estimated locations QEi and projections onto the image
plane q1i and q2i are estimated and measured, respectively,
for i = 1, · · · , n. Associated with each QEi is the normal
vector to the DTM at this point, namely Ni. One can then
write: ⎡

⎢⎢⎢⎢⎢⎣

−P (q21) P (q21)
R12q11NT

1
NT

1 R1q11

−P (q22) P (q22)
R12q12NT

2
NT

2 R1q12

...
...

−P (q2n) P (q2n) R12q1nNT
n

NT
n R1q1n

⎤
⎥⎥⎥⎥⎥⎦

[
p12

p1

]
=

⎡
⎢⎢⎢⎢⎢⎣

P (q21)
R12q11NT

1
NT

1 R1q11
QE1

P (q22)
R12q12NT

2
NT

2 R1q12
QE2

...
P (q2n) R12q1nNT

n

NT
n R1q1n

QEn

⎤
⎥⎥⎥⎥⎥⎦

(5)

In compact notation:

An

[
p12

p1

]
= Bn. (6)

Note that An and Bn depend on known quantities: the es-
timated features, the normals of the DTM tangent planes,
and the images of the features at the two time instances,
together with the unknown orientation R1 and the relative
rotation R12.

IV. Error analysis

In order to evaluate the performance of the algorithm,
the objective-function of the minimization process that
achieves to meet the C-DTM constraint needs to be de-
fined. For that purpose, a functions fi : IR12 → IR3 is
defined for each feature point i, penalizing constraint (4)
violation:

fi(p1, φ1, θ1, ψ1, p12, φ12, θ12, ψ12) =

P(q2, q2) [p12 +R12Li (GEi − p1)] /|C2G| (7)

In the above expression, R12 and Li are functions of
(φ12, θ12, ψ12) and (φ1, θ1, ψ1) respectively. Consider the
vector-function F : IR12 → IR3n,

F (p1, φ1, θ1, ψ1, p12, φ12, θ12, ψ12) = [f1, . . . , fn]T . (8)

With this definition, the C-DTM navigation problem has
been reduced to one of finding a zero for the function (8).
In a practical situation, with n > 6 and noisy data, the
function will have no zero and hence one will be content
to finding a minimum in some sense of the function, for
instance, computing the twelve parameters that minimize
M(θ,D) = ‖F (θ,D)‖2, where θ represents the 12-vector
of the parameters to be estimated, and D is the concate-
nation of all the data obtain from the optical-flow and the
DTM. Using first order perturbations, it can be shown [4]
that the connection between the uncertainty of the data
and the uncertainty of the estimated parameters is given
by:

Σθ =
(
dg

dθ

)−1 (
dg

dD

)
ΣD

(
dg

dD

)T (
dg

dθ

)−1

(9)

Here, Σθ and ΣD represent the covariance matrices of the
parameters and the data respectively and the function g
is defined as follows:

g(θ,D) .=
d

dθ
M(θ,D) =

d

dθ
FTF = 2JT

θ F (10)

Jθ = dF/dθ is the (3n × 12) Jacobian matrix of F with
respect to the twelve parameters. By ignoring second-order
elements, the derivations of g can be approximate by:

dg

dθ
≈ 2JT

θ Jθ (11)

dg

dD
≈ 2JT

θ JD (12)

JD = dF/dD is defined in a similar way as the (3n×m)
Jacobian matrix of F with respect to the m data com-
ponents. Assigning (11) and (12) back into (9) yield the
following expression:

JT =
(
JT

θ Jθ

)−1
JT

θ

Σθ = JT · (JDΣDJ
T
D

) · JT
T (13)

The central component JDΣDJ
T
D represents the uncertain-

ties of F while the pseudo-inverse matrix
(
JT

θ Jθ

)−1
JT

θ

transfers the uncertainties of F to those of the twelve
parameters. In the following subsections, Jθ, JD and ΣD

are explicitly derived.
A.. Jθ Calculation

Simple derivations of fi which is presented in (7), yield
the following results:

NP (q2, C2G) = P(q2, q2)P(C2G, C2G)/|C2G| (14)

df

dp1
= −NP (q2, C2G)R12L (15)
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df

dα1
= −NP (q2, C2G)R12L

(
d

dα1
R1

)
L (GE − p1) (16)

df

dp12
= NP (q2, C2G) (17)

df

dα12
= NP (q2, C2G)

(
d

dα12
R12

)
L (GE − p1) (18)

In expressions (16) and (18): α1 = φ1, θ1, ψ1 and:
α12 = φ12, θ12, ψ12. The Jacobian Jθ is obtained by simple
concatenation of the above derivations.

B. JD Calculation

Before calculating JD, the data vector D must be
explicitly defined. Two types of data are being used by
the proposed navigation algorithm: data obtained from the
optical-flow field and data obtained form the DTM. Each
flow vector starts at q1 and ends at q2. One can consider
q1’s location as an arbitrary choice of some ground feature
projection, while q2 represent the new projection of the
same feature on the second frame. Thus the flow errors
are realized through the q2 vectors.

The DTM errors influence the GE and N vectors in
the constraint equation. As before, the DTM linearization
assumption will be used. For simplicity the derived orien-
tation of the terrain’s local linearization, as expressed by
the normal, will be considered as correct while the height
of this plane might be erroneous. The connection between
the height error and the error of GE will be derived in the
next subsection. Resulting from the above, the q1’s and
the N ’s can be omitted from the data vector D. It will
be defined as the concatenation of all the q2’s followed by
concatenation of the GE ’s.

The i’th feature’s data vectors: q2i and GEi appears only
in the i’th feature constraint, thus the obtained Jacobian
matrix JD = [Jq, JG] is a concatenation of two block
diagonal matrices: Jq followed by JG. The i’th diagonal
block element is the 3×3 matrix dfi/dq2i and dfi/dGEi for
Jq and JG respectively:

df

dq2
=

−1

‖q2‖2

[(
qT
2 · C2G

)
I + q2 · C2GT

]P(q2, q2)/|C2G| (19)

df

dGE
= NP (q2, C2G)R12L (20)

C2G in expression (19) is the ground feature G in the
second camera frame.

C.. ΣD Calculation
As mention above, the data-vector D is constructed from

concatenation of all the q2’s followed by concatenation of
the GE ’s. Thus ΣD should represent the uncertainty of
these elements. Since the q2’s and the GE ’s are obtained
from two different and uncorrelated processed the covari-
ance relating them will be zero, which leads to a two block
diagonal matrix:

ΣD =
[

Σq 0
0 ΣG

]
(21)

In this work the errors of image locations and DTM height
are assumed to be additive zero-mean Gaussian distrib-
uted with standard-deviation of σI and σh respectively.
Each q2 vector is a projection on the image plane where a
unit focal-length is assumes. Hence, there is no uncertainty
about its z-component. Since a normal isotropic distribu-
tion was assumed for the sake of simplicity, the covariance
matrix of the image measurements is defined to be:

Σqi = σ2
I ·

⎡
⎣ 1

1
0

⎤
⎦ (22)

and Σq is the matrix with the Σqi ’s along its diagonal.
In [11] the accuracy of location’s height obtained by in-

terpolation of the neighboring DTM grid points is studied.
The dependence between this accuracy and the specific
required location, for which height is being interpolated,
was found to be negligible. Here, the above finding was
adopted and a constant standard-deviation was set to all
DTM heights measurements. Although there is a depen-
dence between close GE ’s uncertainties, this dependence
will be ignored in the following derivations for the sake of
simplicity. Thus, a block diagonal matrix is obtained for
ΣG containing the 3 × 3 covariance matrices ΣGi along
its diagonal which will be derived as follows: consider the
ray sent from p1 along the direction of R1q1. This ray
should have intersected the terrain at GE = p1 + λR1q1
for some λ, but due to the DTM height error the point

G̃E =
(
x̃, ỹ, h̃

)T

was obtained. Let h be the true height of
the terrain above (x̃, ỹ) and H = (x̃, ỹ, h) be the 3D point
on the terrain above that location.

Using that H belongs to the true terrain plane one
obtains:

NT (GE −H) = NT (p1 + λR1q1 −H) = 0 (23)

Extracting λ from (23) and assigning it back to GE ’s
expression yields:

GE = p1 +R1L (H − p1) (24)

For GE ’s uncertainty calculation the derivative of GE with
respect to h should be found:

dGE

dh
= R1L · ( 0 0 1

)T =
R1q1

NTR1q1
(25)
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The above result was obtained using the fact that the z-
component of N is 1: N =

( −∇DTM 1
)T . Finally, the

uncertainty of GE is expressed by the following covariance-
matrix:

ΣGi =
(
dGE

dh

)
· σ2

h ·
(
dGE

dh

)T

= σ2
h · R1q1q

T
1 R

T
1

(NTR1q1)
2 (26)

D.. ΣC2 Calculation
The algorithm presented in this work estimates the pose

of the first camera frame and the ego-motion. Usually,
the most interesting parameters for navigation purpose
will be the second camera frame since it reflect the most
updated information about the platform location. The
second pose can be obtained in a straightforward manner
as the composition of the first frame pose together with
the camera ego-motion:

p2 = p1 −R1R
T
12p12 (27)

R2 = R1R
T
12 (28)

The uncertainty of the second pose estimates will be
described by a 6×6 covariance matrix that can be derived
from the already obtained 12×12 covariance matrix Σθ by
multiplication from both sides with JC2 . The last notation
is the Jacobian of the six C2 parameters with respect to
the twelve parameters mentioned above. For this purpose,
the three Euler angles φ2, θ2 and ψ2 need to be extracted
from (28) using the following equations:

φ2 = arctan
(
R2(2, 3)
R2(3, 3)

)
(29)

θ2 = arcsin (−R2(1, 3)) (30)

ψ2 = arctan
(
R2(1, 2)
R2(1, 1)

)
(31)

Simple derivations and concatenation of the above ex-
pressions yields the required Jacobian which is used to
propagate the uncertainty from C1 and the ego-motion to
C2. The resulting covariance matrix ΣC2 is the same as
the measurement covariance matrix Rk that can be used
for formulating a Kalman filter [6].

Rk = ΣC2 (32)

V.. Existence of a solution
The error analysis in the previous section implicitly as-

sumes the existence of a solution to the minimization prob-
lem which is close to the actual navigation solution. It this
assumptions does not hold, the minimization procedure
may not converge or may get stack on a local minimum far
from the true solutions. This kind of undesirable behavior
may appear under one of the following circumstances:

1) The constraints include one or more outliers that
dominate the overall solution.

2) The configuration of the feature points gives rise to
a degenerate under-constrained system of equations

in such a way that the position or orientation errors
may become undefined. This pathological case may
result, from instance, from using a small number
of feature points, observing flat terrain with no
variations or using a camera with relatively small
field of view.

3) The initial position and orientation employed in the
iterations process are far from the true values and the
nonlinear optimization procedure fails to converge to
a true solution.

The purpose of the next subsections is to consider some
threshold conditions that will guarantee the avoidance of
a pathological situations.

A. Dealing with Outliers
Outliers may be roughly classified in three classes:
1) Outliers due to incorrect feature matching between

frames.
2) Outliers caused by the terrain shape, and
3) Outliers due to DTM/terrain mismatch.

Fig.1 shows the effect of the latter two classes. The outliers
caused by the terrain shape appear for terrain features lo-
cated close to large depth variations. For example, consider
two hills, one closer to the camera, the other farther away,
and a terrain feature Q located on the closer hill. The ray-
tracing algorithm using the erroneous pose may “misses”
the proximal hill and erroneously places the feature on the
distal one. Needless to say, the error between the true and
estimated locations is not covered by the linearization. To
visualize the errors introduced by a relatively large DTM-
actual terrain mismatch, suppose a building was present
on the terrain when the DTM was acquired, but is no
longer there when the experiment takes place. The ray-
tracing algorithm will locate the feature on the building
although the true terrain-feature belongs to a background
that is now visible. As discussed above, the multi-feature
constraint is solved in a least-squares sense for the pose
and motion variables. Given the sensitivity of least-squares
to incorrect data, the inclusion of one or more outliers may
result in the convergence to a wrong solution. A possible
way to circumvent this difficulty that appears to work well
in practice is to use an M-estimator as proposed in [7]

B. Degenerate Configurations
When feature points and/or the DTM are in a degen-

erate configuration, the matrix JT
θ WJθ becomes singular,

suggesting that one can detect critical configurations by
tracking the condition number or other measurement of
how close this matrix is to singular. Similarly, the covari-
ance matrices ΣC2 and Σθ become singular or close to
singular when the number of feature points is small, the
terrain has no features that can be used for differentiation
or the camera FOV is small. Measuring how close these
matrices are to singular and thresholding can be used
to prevent the navigation update from computing an
incorrect navigation solution.
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Fig. 1. Two classes of outliers

C. Large Initial Errors

The linearization algorithm may fail if the initial navi-
gation solution is too far from the true one in such a way
that the approximation of the DTM by a local plane on
the assumed location of the feature point does not hold.
It is then important to define a measurement that will
prevent incorrect computations and quality assessments.
Let P−

k be a covariance matrix that measures the it
a priori uncertainty on the navigation solution. Then a
measurement reject policy may be formulated using this
covariance and the state innovation [14].

VI.. Simulations Results

The purpose of this section is to study the influence
of the different factors considered above on the accuracy
of the C-DTM algorithm under a variety of simulated
scenarios. Each tested scenario is characterized by the
following parameters: number of optical-flow features be-
ing used by the algorithm, image resolution, the grid
spacing of the DTM (also referred as DTM resolution),
the amplitude of hills/mountains on the observed terrain,
and the magnitude of the ego-motion. On each simulation
run, all parameters except the examined one are taken
from a predefined parameters set. In this nominal scenario,
a camera with 400 × 400 image resolution moves at a
constant altitude of 500 m. The terrain model dimensions
are 3×3 km with 300m elevation differences (Fig.7(b)). A
30m DTM grid is used to model the terrain (Fig.4(c)).
The DTM resolution leads to a standard-deviation of
about 2.4m for the height measurements. The default-
scenario also defines the number of optical-flow features
to about 170, with an ego-motion of ‖p12‖ = 40m and
‖(φ12, θ12, ψ12)‖ = 10◦ between two images. Since para-
meters are varied one at a time, the results summarized
next may be considered a sensitivity study, where different

values were examined by performing 150 random tests for
each tested value.

Fig.2 summarizes the effect of the number of optical-flow
features on the accuracy of rotation and the ego-motion
recovery. Fig.2(a) presents the standard-deviations at the
second frame of the camera while the deviations of the ego-
motion are shown in Fig.2(b). As expected, the accuracy
improves as the number of features increases, although the
improvement saturates at about 150 features.

Fig. 2. Number of feature points vs. (a) position and orientation
STD at second frame, and (b) recovered translation and rotation
error.

Fig.3) is the result of the study of the effect of image
resolution. In order to perform this study, it was assumed
that registration could achieve half-pixel accuracy, with
the size of the pixels dictated by the assumed image reso-
lution. As expected, accuracy improves as image resolution
increases due to increase quality in the optical-flow data.

Next, the effect of different DTM grid spacing was
investigated, with grid size varying from 10 to 190 m.
Results are summarized in Fig.4 showing that accuracy
appears to be inversely proportional to grid-spacing, given
that resolution affects the height uncertainty and therefore
overall accuracy. Indeed, Fig.6 shows that the standard-
deviation of the DTM heights increases linearly with
respect to the DTM grid spacing.

The next study addresses the importance of terrain
variations. In is intuitively clear (and follows directly from
the C-DTM constraint) that when flying above a planar
terrain ground features do not contain the required infor-
mation for computing the camera pose so that constraints
become singular. As the variability of the terrain increases,
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Fig. 3. Image resolution vs. (a) position and orientation standard-
deviation at second frame and (b)recovered translation and rotation.

Fig. 4. (a) Grid spacing = 190m. (b) Grid spacing = 100m. (c) Grid
spacing = 30m

the features become more informative and better estimates
are obtained. In the study, the DTM elevation variations
were scaled to vary from 50 to 450 m (Fig.7). It is
worth mentioning that the terrain structure plays a crucial
role in the camera pose estimation and the translational
component, while it has no direct affect on the ego-motion

Fig. 5. Grid spacing vs. (a) position and orientation standard-
deviation at second frame and (b)recovered translation and rotation.

Fig. 6. Grid-spacing vs. DTM height error.

rotational component. This is not surprising since C-DTM
should reduce, at worst, to the epipolar constraint. Results
are summarized in Fig.8.

As in all other methods for recovering motion from a
sequence of images, the translation baseline between two
frames has a critical impact in the accuracy of the C-
DTM method. The final study attempts to quantify this
effect by varying the baseline from 5 to 95 m. Results are
summarized in Fig.9.

A. Numerical simulation

Up to this point, error analysis and assessment was
performed under the assumption that the C-DTM is a
standalone method for computing one-shot navigation
solutions. More generally, C-DTM can be used as a soft-
sensor for updating a navigation filter and hence the effect
of the errors should be considered in terms of overall
navigation performance. In [7] a Kalman Filter was pro-
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Fig. 7. Different DTM elevation scalings: (a) 150 m, (b) 300 m, (c)
450 m.

Fig. 8. Terrain variability vs. (a) position and orientation standard-
deviation at second frame and (b)recovered translation and rotation.

posed for fusing inertial navigation and Inertial navigation
systems (INS) with Optical-Flow and a Digital Terrain
map error. The purpose of this section is to evaluate
the effects of the different error sources on the resulting
navigation scheme. For this purpose, the ground trajectory
illustrated in (Fig.10) was flown at a constant velocity of
200 m/sec. for three different altitudes: 700, 1000 and 3000
m. To simplify the simulations and memory management,

Fig. 9. Translation baseline vs. (a) position and orientation
standard-deviation at second frame and (b)recovered translation and
rotation.

a synthetic DTM was constructed by taking a real ground
model as basic cell, and multiplying it until it includes all
the region of the flight (Fig.12). An IMU error model was
also included.

Fig. 10. Flight ground-trajectory.

Remaining camera and simulation parameters were se-
lected as follows:

• Camera FOV: 60 degree.
• Number of feature per frame pair: 100 and 120.
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Fig. 11. DTM basic cell.

Fig. 12. DTM resulting from basic cell cloning.

• Camera resolutions: 500×500, 1000×1000 and
4000×4000.

• No outliers.
• Translation baseline between two frames: 30, 50 and

200 m.
• Time interval between two frames: 5, 15 and 30 sec.

Flight height 700m 1000m 3000m
Free 900m 130m 1300 m

Compensated-x 25 m 20 m 100 m
Free-y 1000m 2000m 4000 m

Compensated-y 25 m 20 m 100 m
Free-z 250m 180m 250 m

Compensated-z 25m 20m 150m

Table 1. Maximum errors vs. height.
To illustrate the results, Tables 1 and 4 contain the

errors for two of the parameters: flight altitude and camera

resolution.

Resolution 500x 1000x 4000x
500 1000 4000

Max x error 50m 20m 10m
Max y error 50m 20m 10m
Max z error 35m 20m 10m

Table 2. Effect of resolution on max. error.

VII. Conclusion and Future Work

In this paper an error study was conducted on the C-
DTM approach for computing a navigation solution based
on correspondence or optical flow and a digital terrain
map. A A linear approximation on the C-DTM constraint
was performed in order to quantify the effect of various
inaccuracies on the estimated navigation solution. Further-
more, situations under which the solution to the C-DTM
constraint may lead to a wrong fix were analyzed together
with computable indicators. Results were illustrated using
a sensitivity study of the method under different testing
and simulation conditions. It was shown that the algorithm
behaved robustly even with relatively noisy data and a
challenging environment. Following the analysis, it can
be argued that the proposed algorithm can be effectively
used as part of a navigation system of autonomous flying
vehicles. Specific conclusions are as follows:

1) The most critical sensitivity parameter is the FOV
of the camera used for constructing the C-DTM
constraint. Results are excellent for FOV=60o but
fail to converge for FOV < 8o when the geometry of
the constraints become degenerate.

2) C-DTM is also sensitive to small translational base-
line or when the observed ground patch is too small
and with little terrain variations.

3) Camera resolution also affect the accuracy of the
method.

4) Flight altitude has two different effects. For relatively
low altitudes, accuracy increases as a function of
height since the size of the ground patch increases
and consequently larger translation baselines can be
used. At some point and for a fixed camera resolu-
tion, accuracy begins to deteriorate due to decreased
ground resolution.

The results obtained by using the C-DTM constraint can
be improved by modifying some of the implementation
aspects of the solution. From an image processing view-
point, it is possible to use more structured features or
some known geographical entities like valleys and hills
occluding boundaries. From a numerical perspective, one
can consider to improve the initial solution before starting
the computations by estimating R12 and p12 (up to a
constant) by using the more standard epipolar constraint,
and only then using a simplified version of the C-DTM to
estimate R1 and actual position.

More ambitiously, current research work is focused on
reducing the impact of some of the vision-related parame-
ters on an overall navigation solution. For example, if the
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pure C-DTM solution is challenging due to a relatively
small field of view, low altitude or short baseline, infor-
mation can be integrated using a navigation filter (e.g.,
a Kalman filter) to work iteratively over several frames.
Some progress has already been achieved by considering
the inclusion of the C-DTM constraint directly on the
navigation filter.
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