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We consider a modified formulation for the recently developed new approach in the continuum solvation
theory (Basilevsky, M. V.; Grigoriev, F. V.; Nikitina, E. A.; Leszczynski, J. J. Phys. Chem. B 2010, 114,
2457) which is based on the exact solution of the electrostatic Poisson equation with the space-dependent
dielectric permittivity. Its present modification ensures the property curl E ) 0 for the electric strength field
E inherent to this solution, which is the obligatory condition imposed by Maxwell equations. The illustrative
computation is made for the model system of the point dipole immersed in a spherical cavity of excluded
volume.

1. Introduction and Notation

The new efficient algorithm providing the exact solution for
the Poisson electrostatic equation with a space-dependent
dielectric permittivity function ε(r) (where r is a space point
vector) has been formulated recently.1 It proved to be a useful
tool for applications in the solvation theory. The objective of
the present note is to refine the derivation of its underlying
equations without changing the ultimate results and the com-
putational scheme.

The necessary preliminary notations are introduced below.
E ) -∇ψ represents the electric field strength E and the
electrostatic potential ψ, E0 )-∇ψ0 corresponds to the vacuum
electric field strength E0 (where ε ) 1) and the pertaining
vacuum potential ψ0, and the vacuum field obeys the Poisson
equation ∇2ψ0 ) -4πF, where F is the charge distribution of a
solute. The displacement field is, at the primary step, defined
conventionally as

The background static Maxwell equations read as

It was shown1 that the exact solution of eq 2a can be
expressed in terms of the D-E0 theorem:2-4

In ref 1 the solute immersed in the nonuniform continuum
medium with a position-dependent dielectric permittivity func-

tion ε(r) has been considered. As usual, the solute was contained
in a cavity of excluded volume where ε ) 1. Equation 3 is
valid for the case of a cavity with a complicated shape, provided
the function ε(r) is continuous everywhere in space. On the basis
of this idea, the explicit algorithm performing a computation
of solvation effects was elaborated.1 The computational scheme,
called SBCM (smooth boundary continuum model), proved to
work successfully for various applications. Two versions of this
methodology (SBCM-1 and SBCM-2) were based on the
following expressions for the total electrostatic free energy Gel

and the solvation free energy Gsolv (the first two equations for
SBCM-1 and the second two equations for SBCM-2):

In eq 5 Φ(r) is the response field defined as ψ ) ψ0 + Φ and
g(r) is the induced polarization charge. This equation was
derived from the generalized (including the medium) Poisson
equation ∇(ε∇ψ) ) -4πF, which is equivalent to eq 2a when
eq 1 is valid.

According to eqs 1 and 3, E was considered1 as

The inconsistency accompanying this step is revealed after
∇ × E is calculated:
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D ) εE (1)

∇D ) 4πF (2a)

∇ × E ) 0 (2b)

D ) E0 (3)

Gel )
1

8π ∫ED d3r ) 1
8π ∫ 1

ε
(∇ψ0)

2 d3r

Gsolv ) - 1
8π ∫ (1 - 1

ε )(∇ψ0)
2 d3r (4)

Gsolv ) 1
2 ∫ FΦ d3r

Φ(r) ) ∫ g(r′)
|r - r′| d3r′; g(r) ) 1

4πε2
(∇ε ∇ψ0)

(5)

E ) - 1
ε

∇ψ0 (6)
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Provided ∇ε * 0, which is the main objective addressed here,
the right-hand part of eq 7 vanishes only in a few exceptional
cases.1-3 As a result, eq 2b is violated.

This inconsistency is explained and resolved in the present
work, thus clearly establishing the status of the SBCM approach.
Sections 2 and 3 are devoted to the general consideration of
the question. As a particular example, we formulate in section
4 the problem of solvation for a point dipole in a spherical cavity
with the continuous position-dependent dielectric function ε(r)
in the external region. This is an extension of the well-known
classic Onzager dipole model, in which ε ) ε0 is treated as a
constant everywhere outside the cavity. The full solution for
the case of variable ε(r) requires sophisticated computations even
for this extremely simple system. Their results are reported and
discussed in the main text (sections 5 and 6), whereas the
technical computational details are transferred to Appendices
A-D.

2. Solid Background for the SBCM

To satisfy eq 2b, the definition of the vector field E suggested
by eq 6 must be modified. Using the Helmholtz representation5

for this expression in terms of its gradient (E1) and curl (E2)
components, we find the partitioning scheme

Here the scalar (electrostatic) potential ψ and the vector potential
A are introduced. They are defined as5

For clarity, the derivation of eq 9 is extended in Appendix A.
In this way the scalar charge Q(r′) and the vector triplet of

sources I(r′) are determined. Their direct evaluation yields

In eq 10 g(r′) is the polarization charge defined in eq 5 and
F(r′) is the solute charge density. The vector source I(r′) in eq
11 is identical with the curl in eq 7. It is also seen that the first
line of eq 9 together with eq 10 exactly reproduces the SBCM-2
computational scheme for the solvation energy (i.e., eq 5) as
devised earlier.1 Therefore, eq 5 for the response field Φ(r)
appears under the condition that all solute charges are contained
inside the cavity where ε ) 1 (i.e., (ε - 1)F ) 01,6).

On the basis of these results, we can now modify the
definition of the electric field strength E as

It obviously satisfies eq 2b and suggests the computational
scheme for the solvation energy, which was already established
as SBCM-2.

The solenoidal term E2 arises as a spurious component of E
when this field is inconsistently represented in the form of eq
6. Its appearance seemingly distinguishes the SBCM-1 and
SBCM-2 algorithms. For the electrostatic energy the following
misfit quantity is obtained:

The use of the identity ∇ψ0[∇ × A(r)] ) ∇[A(r) × ∇ψ0]
transforms this equation into

The volume integral is transformed into the surface one where
the closed surface S surrounds the volume V and n is the unit
normal direction at dS. Similar to the derivation in Appendix
A, the surface can be shifted far away from the solute region
where ∇ε vanishes and A(r) ) 0. In this way we obtain δG )
0 and Gel(SBCM-1) ) Gel(SBCM-2). A similar equality is valid
for the solvation free energies.

3. Two Alternative Interpretations of Eq 12

The first interpretation is most straightforward. Under the
condition D ) εE (eq 1), eq 12 is considered as an approxima-
tion to the exact solution of eq 2a. The essence of this
approximation is revealed as follows. By applying eq 1, we
convert eq 12 first into D ) -∇ψ0 - εE2 and next into ∇D )
4π(F - δF), where

The comparison with eq 2a signals that δF is the spurious
charge, a measure of the pertaining inaccuracy. It is explicitly
evaluated in Appendix B. The way to the accurate treatment is
traced by introducing the exact potential

and the corresponding exact electric field strength

Thereby, ∇� serves as the desired correction to eq 12. On the
basis of eq 15, the reevaluation of D and ∇D regenerates eq 2a
under the condition

∇ × (- 1
ε

∇ψ0) ) 1

ε2
(∇ε × ∇ψ0) (7)

- 1
ε

∇ψ0 ) E1 + E2

E1 ) -∇ψ; E2 ) ∇ × A
(8)

ψ(r) ) 1
4π ∫ 1

|r - r′|∇(- 1
ε

∇ψ0) d3r′ ) ∫ Q(r′)
|r - r′| d3r′

A(r) ) 1
4π ∫ 1

|r - r′|∇ × (- 1
ε

∇ψ0) d3r′ ) ∫ I(r′)
|r - r′| d3r′

(9)

Q(r′) ) 1
4π( 1

ε2
∇ε ∇ψ0 - 1

ε
∇2ψ0) ) g(r′) + 1

ε
F(r′)

(10)

I(r′) ) 1

4πε2
∇ε × ∇ψ0 (11)

E ) E1 ) - 1
ε

∇ψ0 - E2 (12)

δG ) Gel(SBCM-1) - Gel(SBCM-2) ) 1
8π ∫E2D d3r

) - 1
8π ∫∇ψ0(r)[∇ × A(r)] d3r

δG ) - 1
8π ∫V

∇ · [A(r) × ∇ψ0] d3r

) - 1
8π ∫S

n · [A(r) × ∇ψ] dS

δF ) 1
4π

∇(εE2) (13)

Ψ ) ψ + � (14)

E ) - 1
ε

∇ψ0 - E2 - ∇� ) E1 - ∇� (15)

∇(ε∇�) ) -4π δF (16)
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This Poisson-like equation defines the correction potential �.
The discussion of its solution is transferred to Appendix B.

The alternative second interpretation looks more tricky. Let
us assume that the new pair of fields D (eq 3) and E (eq 12)
obey Maxwell eqs 2a and 2b but the conventional linear
connection rule formulated as eq 1 is invalid. As a concluding
step, it must be consistently changed to become compatible with
the new eq 12. The desired connection reads as

The conventionally contracted form of this expression uses
the integral kernel 1/ε(r,r′) as defined as follows:

Here and henceforth, we distinguish the gradient operators ∇
and ∇′ as those acting on the variables r and r′, respectively.

Equation 18 represents a typical nonlocal expression3,7,8 with
the kernel ε-1(r,r′). Its nonlocal tensorial second part serves as
a correction annihilating the spurious solenoidal fraction of the
operator (1/ε)∇. In this way, the combination of eqs 3, 12, 17,
and 18 provides the exact solution for the problem in eqs 2a
and 2b with a nonlocal relation (eq 18) interconnecting the
E and D fields. The SBCM-2 prescription in eq 5 remains with
no changes as the working algorithm which underlies the
practical implementation of this solution. As proved in section
2, the free energy eqs 4 and 5 remain exact and equivalent.

The nonlocal conditions in eqs 17 and 18 can be reformulated
in a different but entirely equivalent form, which follows from
eqs 8 and 9 for E1 (which defines E according to eq 12):

The expression in braces represents the potential ψ which
generates the exact field E. After substitution of D ) -∇ψ0

(i.e., the D-E0 theorem), it turns into the SBCM-2 potential,
as given by eqs 9 and 10. Being equivalent to eq 17, eq 19
suggests a much simpler algorithm, because the tensorial nature
of the algorithm in eq 18, introduced via the vector product
“×”, is eliminated in terms of the new transcription. The E-D
relation in eq 19 together with the pair of Maxwell eqs 2a and
2b provides the most compact formulation of the SBCM as the
rigorous nonlocal procedure.

4. Sample Case: Onsager Point Dipole with a Smooth
Boundary

In the present section we consider an approximate evaluation
of the difference between the exact free energy Gel, extracted
from the solution of eqs 1, 2a, and 2b (without the approximation
in eq 3), and the SBCM energies in eqs 4 and 5 (they are
rigorously equivalent, as shown at the end of section 2). The
computation is performed for the point dipole with moment m
positioned at the center of the spherical cavity of radius a with

ε ) 1 inside the cavity. The detailed vectorial notation will be
used henceforth for the space variables, namely, rb(r,ϑ,�) and
rb′(r′,ϑ′,�′), with r, ϑ, and � and the primed counterparts being
spherical coordinates. Notations d3r and d3r′ are retained for
volume differentials. The center of the cavity is placed at the
origin of the coordinate frame. The spherically symmetric
dielectric function depends on the radius r1 as

Here � is the standard dielectric susceptibility and z(r) represents
the dimensionless solvent density. Its growth begins at the cavity
boundary and the asymptotic value z ) 1 is reached when R(r
- a) . 1, converging to the static permittivity value ε(r) ) ε0.
Parameter R measures the steepness of the density evolution.

The free energy correction to the SBCM result in eq 4 or 5
will be denoted as δGel. It originates from the interaction
between the Onsager dipole and the polarization charge density
δF, which generates the response potential � calculated as

The third line represents the perturbational version of eq B6
(�0 in eq 21 stands for � in eq B6).

The explicit expressions for δF (eq 13) and �0 and �1 (eq
21) are derived in Appendices B and C. Provided the Onsager
dipole is arranged along the z axis, the desired free energy excess
is

This computation is not a simple task. The accurate evaluation
of the response potential � requires a preliminary exact solution
of eq 16. This prescription is simplified in eq 21, where the
first step of the iteration procedure described in Appendix B is
applied. The details of such a computation are discussed in
Appendices C and D. Here we explain only the most ap-
proximate version of the final result, in which the angular
dependence of the polarization density δF(rb) is simplified
significantly (see eq C3). It reads as

Here A and B represent the contributions coming from the
potentials �0 and �1 in eq 21. Two quadratures over two radial
variables r and r′ are involved in A. The explicit expression for
B, containing three such quadratures, can also be found in
Appendix C (see eq 7). The kernel K0(r,r′) in eq 23 represents

E ) 1
ε

D - 1
4π

∇ × ∫ 1

ε2(r′)
(∇′ε(r′) × D(r′)) 1

|r - r′| d3r′

(17)

E ) ∫ 1
ε(r, r′)D(r′) d3r′

1
ε(r, r′) ) 1

ε(r′) δ(r - r′) + 1
4π(∇ 1

|r - r′| ) × [∇′ 1
ε(r′) × ...]

(18)

E(r) ) ∇{ 1
4π ∫ d3r′

|r - r′| [ 1
ε(r′)∇′ + ∇′ 1

ε(r′)]D(r′)}
(19)

ε(r) ) 1 + 4π�z(r)
z(r) ) 1 + exp[-2R(r - a)] - 2 exp[-R(r - a)]

(r > a)
z(r) ) 0 (r < a)

(20)

�( rb) ) �0( rb) + �1( rb)

�0( rb) ) ∫ d3r′
| rb - rb′|

δF( rb′)
ε( rb′)

�1( rb) ) 1
4π ∫ d3r

| rb - rb′|
∇′ε( rb′) ∇′�0( rb′)

ε( rb′)

(21)

δGel )
1
2

m
d�
dz |

r)0
(22)

δGel ) - 2
9

m2(A + 1
3

B)
A ) ∫a

∞
dr∫a

∞
dr′ K0(r, r′) 1

ε(r′)
dε(r)

dr
d

dr′(-
1

ε(r′))
(23)
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the result of approximate integration of the true kernel 1/|rb -
rb′|3 over spherical angles. Its explicit expression is given as eq
C3 (see Appendix C) and motivated in Appendix D.

Applying this simplification in multiple integration steps,
which are involved implicitly in eq 21, leads to the ultimate eq
23 with no further approximations.

5. Computations

The illustrative computations were performed within the
following strategy. At the first step the zeroth-order potential
�0(rb) in eq 21 was calculated using the rigorous algorithm (eqs
C1 and C2). It is responsible for the pertaining zeroth-order
fraction of the free energy contribution appearing in terms of
eq 22 and denoted as δGel

(0). Five quadratures (two radial ones
and three angular ones) are required for such a computation. A
similar calculation was repeated on the basis of the approxima-
tion in eq 23, the result being

Two radial quadratures are involved in this case. Typical results
of the exact and approximate calculations are compared in
Figure 1 and discussed below.

At the second step we calculated the first-order correction
potential �1(rb) and the corresponding part of the free energy
misfit, denoted as δGel

(1). The approximation in eq 23 yields the
following result:

Three radial integrations are actually involved in eq 25. The
relative importance of this correction can be estimated from
Figure 2.

As discussed in Appendix D, the approximate computations
according to eqs 23-25 include the fitting parameter δ, which
is inserted into the integral kernel K0(r,r′), i.e., the factor entering
the integrand in eq 23 which defines A. This parameter depends
on the asymptotic bulk value ε0 ) 1 + 4π� of the permittivity
ε(r) (see eq 20), and it is determined in such a way that the

approximate perturbational expression in eq 23 reproduced
exactly the nonperturbational rigorous stepwise limit of the total
misfit δGel; this limit is found analytically1 (see eq D7). Only
the zeroth-order term δGel

(0) is displayed in Figure 1. Its exact
computation (profile I, eqs C1 and C2) involves no approxima-
tions and adjustable parameters. The alternative approximate
computation of this term (profile II, eq 24) is based on the above-
mentioned empirical parametrization of the kernel K0(r,r′). As
found by means of eq D9, δ ) 0.64 for ε0 ) 20. The two
computations are entirely independent. The fair agreement
between these two zeroth-order profiles verifies the validity of
the approximation in eq C3 and its calibration as described in
Appendix D. This approximate procedure provides the exact
asymptotic (R f ∞) value of the total misfit. As seen from
Figure 1 for the zeroth-order term, its extrapolation to low R
values reproduces well the rigorous computation with no special
fitting parameters.

It seems that the flat minimum of the exact profile I in Figure
1 results from the computational artifact. It arises owing to the
accumulation of numerical errors during the rigorous computa-
tion (it involves five quadratures) when R becomes large.
Thereby, the practical advantage of the approximate model (two
quadratures for δGel

(0) and three for δGel
(1)) is revealed, as this

approach tends smoothly to the asymptotic (stepwise) limit of
δGel and reproduces it accurately owing to the proper choice
of δ(ε0).

We can finally define the dimensionless parameter

where the misfit value is evaluated according to the approximate
perturbation approach (eqs 23-25). This is the appropriate
measure of the discrepancy between the SBCM and the
alternative complete treatment of Maxwell eqs 2a and 2b with
the conventional nonlocal material relation (eq 1). For the
present dipole system, γ does not depend on the value of the
dipole moment m because both the numerator and denominator
in eq 26 are proportional to m2.

Figure 1. Zeroth-order energy misfit δGel
(0) (kcal/mol) as a function of

the steepness parameter R (Å-1): I, rigorous computation (eqs C1 and
C2); II, approximate computation (eqs 23 and C3). The parameters are
m ) 4.8D, ε0 ) 20, a ) 2 Å, and δ ) 0.64 (eq 24).

δGel
(0) ≈ - 2

9
m2A (24)

δGel
(1) ≈ - 2

27
m2B (25)

Figure 2. Comparison of the zeroth-order δGel
(0) (I) and first-order δGel

(1)

(II) components of the free energy misfit δGel (III) as functions of R
(Å-1). The approximate computation (eqs 23 and C3) was performed
with parameters m ) 4.8D, ε0 ) 20, a ) 2 Å, and δ ) 0.64 (eq 24).
Energies are given in kilocalories per mole.

γ ) | δGel

Gsolv(SBCM) | (26)

16430 J. Phys. Chem. B, Vol. 114, No. 49, 2010 Basilevsky et al.



Plots of γ(R) are shown in Figures 3 and 4 for several values
of ε0. They all converge to the asymptotic value γ = 1/2 in the
step limit Rf ∞. The most remarkable observation is that γ(R)
does not vanish when R f 0. This result follows from the
structure of the underlying equations (both ingredients in eq 26
tend to zero in this limit), and it leads to the conjecture which
is important for applications. The distinction between the two
solvation models, as suggested and discussed in section 3 (i.e.,
those based on the local and the nonlocal E-D relations), is
measured by the ratio

This estimate of the discrepancy is valid within the total R range.
The pertaining exact expression for γ is readily available for
the step limit Rf ∞ (see Appendix D). For large values of the
bulk permittivity ε0 it provides a transparent illustration of the
matter presently under discussion. When ε0 > 10, eq D7 can
safely be simplified as δGel ≈ -(m2/6a3)(1 - 1/ε0) ) (1/
2)Gsolv(SBCM) (the exact stepwise estimate of the SBCM free
energy as the right-hand part of this equation which was obtained
earlier1). Thereby, γ ) 1/2 and

Because the exact asymptotic result in eq D7 for δGel goes down
for lower values of ε0, the range in eq 28 is conserved in the
step limit throughout the total permittivity range, including its
small values.

The inspection of Figures 3 and 4 tells us that the estimates
specific for the step limit do not change significantly in the wide
R range. We infer therefore that the values within the range
1/(1 + γ) ) 0.6-0.8 are reliable when 0.5 Å-1 < R < 3 Å-1,
i.e., in the interval of R which is typical for solvents of real
interest.1 This conclusion is insensitive to the solute size (i.e.,
to the change of the cavity radius a), which obeys rigorously
in the step limit eq 28, whereas a moderate effect of the size
variation observed for finite values of R (Figure 4) does not
modify it markedly. More definite statements would be prema-
ture at present, remembering that the data for finite R values
were computed using the first iteration step of the perturbation
approach based on the extra approximation in eq 23 and also
keeping in mind the numerical problems which arise in the
integrations involved in the present computations when R values
become large.

6. Conclusion

The essence of the present study is the SBCM algorithm1

reformulated in terms of eq 12. Two points of viewing its status
are equally legitimate. According to the first one, eq 12 suggests
an approximate computational scheme. This conjecture is based
on the standard local relation (eq 1) between the D and E fields.
The second alternative point of view substitutes this local
connection rule by its properly modified nonlocal counterpart
(eq 19), which allows for considering eq 12 as the background
for the exact computational scheme.

The first formulation also suggests the route for reaching its
exact solution by solving eq 16. The correction δGel to the
SBCM solvation energy Gsolv(SBCM) then appears, providing
the dimensionless smallness parameter γ; see eq 26. Its exact
evaluation constitutes a considerable computational task which
is much more difficult than the SBCM procedure itself. Provided
this task is performed, the two different algorithms for solving
the position-dependent nonuniform ε problem are totally
designed. The magnitude of the parameter γ is the measure of
the discrepancy between their solutions, which represent two
different solvation models. The first local model represents the
exact solution for the combination of eqs 1, 2a, and 2b, whereas
the second one is the SBCM with its interpretation given in
terms of the nonlocal material relation (eq 19). Both algorithms
are governed by the same dielectric function ε(r) (see eq 20),
with the basic parameters being ε0 (the static bulk permittivity)
and R (the steepness of the variation of ε(r) on the boundary of
the solute cavity). The distinction between them becomes clearly
visible in the stepwise limit of the ε function. Then the first
local algorithm in its full version (including the correction
according to eq 16) converges to the classical continuum theory
(Born, Kirkwood, Onsager, and the recent implementation in
terms of the polarizable continuum model (PCM)10), in which
the stepwise ε approach is introduced as a primary background.
The second (nonlocal) SBCM algorithm reveals a different
behavior in this extreme.1 The so arising discrepancy extends
as well for the case of a smooth boundary with finite R values,
as demonstrated in sections 4 and 5. It is seen now how the
two distinguishing solvation algorithms appear when the
continuous position-dependent ε model is invoked. Such

Figure 3. Dimensionless misfit parameter γ (eq 26) as a function of
R (Å-1): ε0 ) 20, δ ) 0.64 (I); ε0 ) 10, δ ) 0.78 (II); ε0 ) 5, δ )
0.99 (III). The cavity radius is a ) 2 Å.

Figure 4. Dependence of the misfit parameter γ on the cavity radius
a (Å): a ) 2 (curve I); a ) 3 (curve II). ε0 ) 10 for both cases.

Gsolv(SBCM)

Gsolv(SBCM) + δGel
) 1

1 + γ
(27)

1 > 1
1 + γ

> 2
3

(28)
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divergence caused earlier a seeming paradox which was not
fully resolved in ref 1.

The numerical comparison of the two models requires a
reasonably simple evaluation of eq 26, which is only available
for a small highly symmetric system such as the Onsager point
dipole in a spherical cavity with an abrupt boundary (R f ∞).
For this idealized case the estimation γ ≈ 1/2 was obtained.1

Its extrapolation to finite values of R is made in sections 4 and
5 within an approximate perturbational treatment. The basic
outcome, represented by eqs 27 and 28, seems to be reliable
for real solvents. The computation is system-dependent; more-
over, the violation of the D-E0 theorem (eq 3), which is the
origin of the discrepancy in eq 27,2 becomes most apparent for
the present point dipole system, as follows from the examination
of its step limit in ref 1. For real solutes, in which their charge
distributions are not so singular, the lower limit appearing in
the right-hand part of the inequality in eq 28 is expected to
increase, thus decreasing the discrepancy of the two models.

The final comment is addressed to the practical utility of the
present methodologies. The distinction between the two models
does not affect the quality of any of them in applications. This
methodological impact is neutralized by an appropriate param-
etrization which is different for the two models. The computa-
tions of ionic hydration free energies can serve as an illustrative
example. Their treatment proved to be quite satisfactory in terms
of both PCM10 and SBCM.1 In the present context, these two
techniques represent the two models under discussion, being
distinguished by the choice of their steepness parameter defined
as R f ∞ or R ) 3 Å-1 for the PCM (the first model) and for
the SBCM (the second model), respectively.

The attempt of treating the nonuniform dielectric medium at
a continuum level seems natural. Most transparent is its original
formulation in terms of the continuous ε(r) combined with the
local linear relation (eq 1) between the D and E fields. Although
being physically relevant, this elementary scheme proves to be
mathematically controversial without the correction, which
implies the task of finding the solution to eq 16. Its formal
purification, given in the present work in terms of the nonlocal
reformulation, may distort the physical content of this model
in several cases. When the correction introduced by eq 16 in
the local model becomes significant, one may doubt whether
the alternative nonlocal solvation approach, although being
mathematically consistent, remains physically adequate. Such
a case (with an extremely abrupt boundary of the solute cavity)
should be better treated in terms of the alternative and
conventional PCM-like methodology10 with the stepwise ε
function. In particular, the extremely steep change of ε creates
numerical problems at the stage of the gradient calculation in
the SBCM-2 as well as in our present computations. They are
absent in the stepwise PCM procedure. Therefore, the two
different models can serve for describing different sorts of
systems. This issue was already addressed earlier1 with the
reservation that the situation, which is fortunate for the smooth
continuum treatment, seems to be typical for the majority of
real solution systems, in which both solute and solvent particles
are not supposed to be small. Such ultimate conjecture justifies
the practically available route for incorporating a position-
dependent ε function in applications of the solvation theory.
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Appendix A. Basic Relations Underlying the Helmholtz
Partitioning of Vector Fields

The Helmholtz algorithm formulated in eqs 8 and 9 is based
on the following obvious identities:

Here the scalar charge density Q and the triplet of vector sources
I are completely determined by the direct evaluation performed
in eqs 10 and 11.

Equation 9 for ψ(r) follows immediately from eq A1 as a
solution to the Poisson equation. The second line in eq 9,
addressed for obtaining A(r), can be derived from eq A2 by
applying the identity ∇ × ∇ × A ) ∇(∇A) - ∇2A. It follows
then that the result

appears under the condition

Equations A3 and A4 are, indeed, compatible. This is verified
by applying the operator div to eq A3:

As the final step we have applied the fact that I(r′) has the
structure of a curl, i.e., ∇′I(r′) ) 0. The concluding result
appearing in eq A5 is transformed into a surface integral by
means of the divergence integral theorem:

where dS′ is the element of a closed surface S′ and n(r′) is the
unit normal direction at dS′. The surface can be shifted far from
the solute region, where ∇ε ) 0 and I(r′) vanishes.

Appendix B. Beyond the SBCM Solution

The conventional local D-E interrelation is applied below as a
background. Viewed from this point, the SBCM should be
considered as an approximate procedure. It can be refined by
solving eq 16 for the correction potential�. The essential steps
of this treatment are listed.

Free Energy Correction

The equation defining the correction potential � (eq 16) reads
as

∇E1 ) -∇2ψ ) -∇(1
ε

∇ψ0) ) 4πQ (A1)

∇ × E2 ) ∇ × ∇ × A ) -∇ × (1
ε

∇ψ0) ) 4πI

(A2)

A(r) ) ∫ I(r′)
|r - r′| d3r′ (A3)

∇A ) 0 (A4)

∇A ) ∫∇( I(r′)
|r - r′| ) d3r′ ) -∫ I(r′) ∇′( 1

|r - r′| ) d3r′ )

-∫∇′( I(r′)
|r - r′| ) d3r′ (A5)

∇A ) ∫S

I(r′) n(r′)
|r - r′| dS′ ) 0 (A6)

∇(ε∇�) ) -4π δF (B1)
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The quantity δF, being strongly position-dependent, does not
provide a transparent visualization of the significance of the
effects appearing beyond the SBCM. More appropriate is the
corresponding free energy change δGel, the integral character-
istic. With some manipulations for the standard electrostatic free
energy Gel ) (1/8π)∫ED d3r (similar to those made at the end
of section 2), the following exact expression can be derived:

The first term represents the SBCM energy. The correction,
given by the second term, can be estimated in terms of the Green
theorem:

Here F is the solute charge distribution.

Evaluation of δG

The quantity δF (eq 13) is the correction term which is added
to the polarization charge density g(r) appearing in accord with
eq 5 in the SBCM-2. Its explicit expression is based on the
relation E2 ) ∇ × A, where the vector potential A is given in
eq 9. The intermediate result is then obtained as

The identities ∇(εE2) ) ∇εE2 and ∇ × (I(r′)/|r - r′|) )
∇(1/|r - r′|) × I(r′) were implemented. The latter one appeared
because the operator ∇ acts on the r variable, whereas I(r′)
depends on r′. With I(r′) given by eq 11, we find

Perturbation Expansion

The rearrangement of eq B1 results in the equation

Here the first term on the right-hand side represents the
polarization charge appearing in the bulk solvent beyond the
solute cavity. It is therefore scaled by the screening factor 1/ε.
The second term represents the secondary polarization effect
induced by the first term; it is quite similar to the original SBCM
charge g(r), introduced in eq 5. This is seen when the SBCM
approximation ∇� ≈ (1/ε)∇�j 0 is applied in eq B5 with ∇2�j 0

) -4π δF.
The integral equation following from eq B5 reads as

It gives rise to the standard iterative scheme (the perturbation
expansion). As the first step the approximation �(r) ≈ �0(r) is
substituted into the expression for �1(r); it produces the
approximate but explicit result �̃1(r) and �(r) = �0(r) + �̃1(r).
This approximation, being inserted into the expression for �1(r),
produces the second-order correction, etc. The alternative
expansion arises when the SBCM approximation is used in the
�1 expression, i.e., ∇�(r) = (1/ε)∇�j 0(r), where �j 0(r) appears
if the scaling factor 1/ε(r′) is eliminated in the expression for
�0(r), eq B6.

Appendix C. Perturbational Treatment of the Onsager
Dipole

The details of the treatment of the dipolar system examined in
section 4 are considered here. The vector notation for the
spherical coordinates rb(r,ϑ,�) and rb′(r′,ϑ′,�′) is used, the
Cartesian coordinates being x, y, and z. The vacuum potential
created by the dipole is ψ0(rb) ) mz/r3. By substituting it into
eq B4, we obtain

The integral in eq C1 depends only on the phase difference
(� - �′), and we conclude therefore that δF(rb) is �-independent.
By this means the response potential �0(Rb) defined in spherical
coordinates Rb(R,θ,Φ) becomes Φ-independent, such that

This is the final result of the accurate integration. It involves
five explicit quadratures (three in eq C1 and two more in eq
C2).

A significant simplification is gained if we totally neglect in
eq C1 the angular dependence of the denominator, which
corresponds to the zeroth-order term of the expansion of the
kernel |rb- rb′|-3 in spherical harmonics. This approximate kernel
has the form

Gel ) - 1
8π ∫E1∇ψ0 d3r + 1

8π ∫∇� ∇ψ0 d3r

(B2)

δGel ) - 1
8π ∫�∇2ψ0 d3r ) 1

2 ∫�F d3r (B3)

δF ) 1
4π

∇ε∫ (∇ 1
|r - r′| ) × I(r′) d3r′

δF ) 1

(4π)2
∇ε∫ (∇ 1

|r - r′| ) ×

( 1

ε2(r′)
[∇′ε(r′) × ∇′ψ0(r

′)]) d3r′ (B4)

∇2� ) -4πδF
ε

- ∇ε ∇�
ε

(B5)

�(r) ) �0(r) + �1(r)

�0(r) ) ∫ d3r′
|r - r′|

δF(r′)
ε(r′)

�1(r) ) 1
4π ∫ d3r′

|r - r′|
∇′ε(r′) ∇′�(r′)

ε(r′)

(B6)

δF( rb) ) - m

(4π)2 ∫ f( rb, rb′) d3r′

f( rb, rb′) ) (sin ϑ′)[cos ϑ sin ϑ′ - cos ϑ′ sin ϑ cos(� - �′)]
r′2| rb - rb′|3

×

d
dr

ε(r)
d

dr′(-
1

ε(r′))
(C1)

| rb - rb′| ) (r2 + r′2 - 2rr′ cos µ)1/2

cos µ ) cos ϑ cos ϑ′ + sin ϑ′ sin ϑ cos(� - �′)

�0(R, θ) ) -2π∫ r2 dr
ε(r)

sin ϑ dϑ
1

|Rb - rb|
×

∫ d3r′ m

(4π)2
f( rb, rb′) (C2)
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The details of this expression are given in Appendix D; δ is
the fitting parameter and is supposed to be small. Then the
integral in eq C2 is explicitly performed by using the expansion
of 1/|Rb - rb| in spherical harmonics:11

Next the evaluation of the second component �1(Rb) of the
potential �(Rb) (eq 21) is also available within the approximation
in eq C3. It involves the quantity

Here A(R′) is given in eq C4. The final result includes one extra
quadrature:

The total free energy excess is obtained as

The quantities A and B represent the values of the functions
A(R) (eq C4) and B(R) (eq C6) at R ) 0.

Appendix D. Motivation and Justification of the
Approximate Expression in Eq C3

We consider here the approximation for the function K(rb,rb′) )
|rb- rb′|-3 which eliminates its angular dependence. It simplifies
significantly the subsequent angular integrations in eq C2. The
result (eq C3) is gained by averaging of this function on
the surface of the sphere with radius r ) |rb|, thus producing the
term

where r′ ) |rb′| and µ is the angle between vectors rb and rb′. We
used next the multipole expansion11,12

where

and r> ) max(r,r′). The Legendre polynomials of argument x
are denoted as Pl(x). The result (eq D2) can be obtained from
the standard expression

By evaluating the derivative

the expansion in eq D2 is readily reconstructed. Its first term
(l ) 1) is inserted into eq D1 to yield the approximation which
appears after the integral is performed:

Strictly speaking, it is supposed that δ f 0 in eq D6. Thereby,
this expression diverges when r ) r′. The weak singularity is
eliminated during the further integrations over r′ and r according
to eqs 23 and C4-C6. Within the simplified treatment, accepted
in our approximate calculations, the quantity δ > 0 was
considered as an adjustable parameter providing the converged
values of K0(r,r′) for r ) r′.

We consider finally the stepwise limit of the free energy misfit
δGel. It corresponds to the extreme R f ∞ performed in the
dielectric function (eq 20). For the exact solution of the Poisson
eq 16, this limit represents the PCM approach,10 which reduces
to the standard Onsager problem13 for the special case of our
dipolar system. Then the SBCM algorithm can be performed
analytically,1 providing the expression

K0(r, r′) ) 1

r3[1 + t
2

ln(1 + t - δ
1 + t )] (r > r′;t ) r′

r )
K0(r, r′) ) 1

r′3[1 + t
2

ln(1 + t - δ
1 + t )] (r < r′;t ) r

r′)
(C3)

�0(R, θ) ) - 2m
9

R cos A(R)

A(R) ) ∫a

∞
dr′ [∫a

R ( r
R)3c(r, r′)

ε(r)
dr + ∫R

∞ c(r, r′)
ε(r)

dr]
c(r, r′) ) dε(r)

dr
d

dr′(-
1

ε(r′)) K0(r, r′)
(C4)

b(R′) ) 1
4π

1

ε(R′)

dε(R′)

dR′ [A(R′) + R′ dA
dR′]

dA
dR′ ) - 3

R′ ∫a

∞
dr′ [∫a

R′ ( r
R′)

3c(r, r′)
ε(r)

dr]
(C5)

�1(R, θ) ) - m
9

R
3

(cos θ)B(R)

B(R) ) ∫0

R (R′
R )3

b(R′) dR′ + ∫R

∞
b(R′) dR′

(C6)

δGel ) - 2m2

9 (A + 1
3

B)
A ) ∫a

∞
dr′ [∫a

∞ c(r, r′)
ε(r)

dr]
B ) ∫a

∞
b(R′) dR′

(C7)

K0( rb, rb′) ) 1
4π ∫0

2π
d�∫0

π
sin µ dµ ×

( 1

√r2 + r′2 - 2rr′ cos µ)3
(D1)

(r2 + r′2 - 2rr′ cos µ)-3/2 ) -( 1
r>)

3 1
t - cos µ ∑

l)1

∞

ltl-1Pl(cos µ)

(D2)

t ) { r
r′ (r < r′)

r′
r

(r > r′)
(D3)

1
| rb - rb′| )

1
r>

g(t); t < 1

g(t) ) 1

√1 + t2 - 2t cos µ
) ∑

l)0

∞

tlPl(cos µ)
(D4)

∂g(t)
∂t

) [g(t)]3(cos µ - t) (D5)

K0 = 1

r>
3(1 + t

2
ln

1 - t + δ
1 + t ); t < 1 (D6)

δGel ) Gel(PCM) - Gel(SBCM) )

- m2

6a3(1 - 1
ε0

)( ε0 - 1

ε0 + 1/2) (D7)

16434 J. Phys. Chem. B, Vol. 114, No. 49, 2010 Basilevsky et al.



Here m is the dipole moment value, a is the radius of the
spherical cavity, and ε0 is the bulk (static) dielectric permittivity
(see section 4). This result appears because ε(r) is the Heaviside
step function and dε(r)/dr becomes the δ function in the step
limit. The integrals involved in the theory are performed using
this property at point r ) a, whereas the smooth functions
entering their integrands are withdrawn out of the integration
symbol at this point. A similar manipulation can be applied to
eq C7 with the following outcome: in the step limit we find B
) (A/4π) ln ε0 whereas the evaluation of A yields the following
ultimate result:

The representation in eq D6 for K0 is invoked here. The
spurious logarithmic dependence on ε0 is the consequence of
approximations involved in eq D6 (the true singularity at r )
r′ is canceled because δ is treated as a finite positive number).
This defect can formally be eliminated by assuming that δ is a
function of ε0; therefore, eqs D7 and D8 become identical when

In this way the present approximate model provides the result
for δGel which turns into the exact nonperturbational value of
δGel in the step limit Rf ∞, when δ is defined according to eq

D9. It can be extrapolated to finite R values in terms of eq C7.
The quality of this approach is visualized by Figure 1, where
the exact (eq 21, with � ) �0 being computed according to
eqs C1 and C2) and approximate (eq 24) calculations for the
zeroth-order term δGel

(0) are made for ε0 ) 20 with δ(20) )
0.64, as extracted from eq D9.
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