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The Universal Arrow of Time II: 

Quantum mechanics case. 

 

Kupervasser Oleg 

 

Abstract 

 
The given paper is natural continuation of our previous paper [1]. We have illustrated earlier, that in the classical 

Hamilton mechanics for an overwhelming majority of real chaotic macroscopic systems there is alignment of their 

thermodynamic time arrows because of their small interaction. This fact and impossibility to observe entropy 

decrease at introspection explain the second low of thermodynamics. In a quantum mechanics the situation even is 

little bit easier - all closed systems of finite volume are periodic or nearly periodic. The proof in a quantum 

mechanics is in many respects similar to the proof in the classical Hamilton mechanics - it also uses small 

interaction between subsystems and impossibility to observe entropy decrease at introspection. However there are 

special cases which were not in the classical mechanics. In these cases a one microstate corresponds to a set of 

possible macrostates (more precisely their quantum superposition). Consideration this property with using 

decoherence theory and taking into account of thermodynamic time arrows   introduces new outcomes in quantum 

mechanics. It allows to resolve the basic paradoxes of a quantum mechanics: (a) to explain paradox of wave packet 

reduction  at measurings when the observer is included in system (introspection) (paradox of the Schrodinger cat); 

(b) to explain unobservability of superposition of macroscopic states by the external observer in real experiments 

(paradox of Wigner's friend); (c) to prove the full equivalence of multiworld and Copenhagen interpretations of  

quantum mechanics; (d) to explain deviations from the exponential law at decay of particles and pass from one 

energy level on another (paradox of a kettle which never will begin to boil). 

 

1. Introduction 

 
   First of all, it is necessary to note, that in our paper if other is not stipulated, the full system is 

in the closed finite volume, contains a finite number of particles and is isolated from 

environment. These are principal requirements of the entropy increasing law which we consider. 

Full system is described by quantum mechanics laws. 

   In our previous paper [1] we considered alignment of thermodynamic time arrows in the 

classical Hamilton mechanics leading to the entropy increasing law. Here we wish to consider a 

quantum case. A reason of alignment of thermodynamic time arrows in a quantum mechanics is 

the same as in the classical mechanics. It is «entangling» and «decoherence» [2-3, 17, 24-27] - 

small interaction between real chaotic macroscopic systems or real chaotic macroscopic system 

in an unstable state and a quantum microsystem (measuring process in a quantum mechanics). 

   Use of phenomenon of alignment of thermodynamic time arrows for a quantum mechanics for 

the analysis of widely known paradoxes of a quantum mechanics gives their full and consistent 

resolution. All these paradoxes are caused by experimental unobservability for real macroscopic 

bodies of such purely quantum phenomena predicted by a quantum mechanics, as (a) 

superposition of macrostates for the Copenhagen interpretation or (b) presence of many worlds 

in case of multiworld interpretation. 

   Really, quantum mechanics has the principal difference from classical one - if in classical 

mechanics one microstate corresponds to only one macrostate, but for quantum mechanics one 

microstate (a pure state characterized by a wave function) can correspond to a set of macrostates. 

(Or, otherwise, the microsate is superposition of microstates corresponding to the different 

macrostates.) Such situation is not possible in the classical mechanics! Such state can not be 

considered as mixed state, i.e. ensemble of this several macrostates with corresponding 

probabilities. Evolution of superposition and the mixed states are different. This difference is 

related to presence of the interference terms for superposition (or quantum correlations of the 

worlds for multiworld interpretation). Though for macroscopic bodies this difference is very 
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small, but, nevertheless, it exists. What disturbs to observe experimentally this difference? It is 

the same reasons that disturbs to observe entropy decreasing because of alignment of 

thermodynamic time arrows! 

    Really, more the detailed analysis below, shows, that the experimental manifestations of an 

interference (quantum correlations) are considerably only at entropy decrease. This process is not 

observable in principle if the observer is included into observable system (introspection). Thus, 

entropy decrease is very difficultly observable if the observer is not included in the observed 

macrosystem, because of alignment of thermodynamic time arrows of observable system and the 

observer/environment during decoherence. Almost full isolation of a macrosystem from 

environment / the observer is necessary between observations. 

     Small manifestations of the interference (quantum correlations) at entropy increase can not be 

observed at introspection in principle (at introspection the full observation is impossible - only 

macroparameters can be measured exactly, the full measuring is impossible). They are very 

difficultly observable for a case of the external observer because of decoherence with the 

observer/environment. 

 
2. Qualitative consideration of the problem. 

 
    The reason of alignment of thermodynamic time arrows in a quantum mechanics, as well as in 

the classical mechanics, is small interaction between real chaotic macroscopic systems. This well 

studied appearance carrying a title «decoherence» [2-3, 17, 24-27]. Its result is not only widely 

known «entangling» states of systems, but also alignment of thermodynamic time arrows. (The 

direction of thermodynamic time arrow is defined by a direction of the entropy increase.) The 

reason of alignment of thermodynamic time arrows is the same, as in the classical Hamilton 

mechanics - instability of processes with opposite time arrows with respect to small 

perturbations. These perturbations exist between the observer/environment and observed system 

(decoherence). 

    Similar arguments in the case of quantum mechanics have been given in Maccone’s paper [4]. 

However there he formulated, that the similar logic is applicable only in a quantum mechanics. 

The incorrectness of this conclusion has been shown in our previous papers [1, 5]. The other 

objection has been formulated in the paper [6]. There are considered small systems with strong 

fluctuations. Alignment of thermodynamic time arrows does not exist for such small systems. It 

must be mentioned that both Maccone's replay to this objection and the subsequent paper of 

objection authors [7] do not explain the true reason of described disagreement. The real solution 

is very simple. More specifically, the entropy increase law, the concept of thermodynamic time 

arrows and their alignment are applicable only to nonequilibrium macroscopic objects. Violation 

of these laws for microscopic systems with strong fluctuations is widely known fact. 

Nevertheless, though the objection [6] is trivial physically, but it is interesting from purely 

mathematical point of view. It gives good mathematical criterion for macroscopicity of chaotic 

quantum systems. 
    The situation in quantum mechanics even is easier, than in classical one: chaotic quantum 

systems are almost-periodic systems. Their chaotic character is defined by the fact that the 

energies (eigenvalues of a Hamiltonian, «frequencies» of energy modes) are distributed over the 

random law [8]. 

      It is often possible to meet the statement that the behavior of quantum chaotic systems differs 

very strongly from the behavior of classical ones. It, however, the strong mistake related to deep 

misunderstanding physicists of these systems. Really, quantum chaotic systems are almost-

periodic whereas classical chaotic systems are characterized by the random law for Poincare's 

returns times. Thermodynamic time arrows of the observer and the observable system have the 

same direction. Therefore the observer is capable to carry out observation (or introspection) only 

on finite time intervals when its time arrow exists (i.e. its state is far from thermodynamic 

equilibrium) and does not change its direction. On such finite times (that the observer is capable 
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to carry out observation during this time) the behavior of chaotic quantum systems has the same 

character, as for classical quantum systems. 

     Decoherence results in pass of observed systems from a pure state to mixed one, i.e. results in 

entropy increase. (Actually, one macrostate transforms to the set of microstates). On the other 

hand, Poincare's returns yield inverse result (i.e. «recoherence») and are related to the entropy 

decrease. Decoherence and correspondent alignment of thermodynamic time arrows of the 

observer and observable systems leads, thus, also to the syncs of moments when the systems pass 

from pure states to mixed states. Consequently, it makes impossible to observe experimentally 

the inverse process (i.e. «recoherence»). 

    Summarizing, consideration of alignment of thermodynamic time arrows in quantum 

mechanics is in many aspects similar to the consideration in the classical mechanics. However 

consideration of this property for the analysis of widely known paradoxes of a quantum 

mechanics gives their full and consistent resolution. These are following paradoxes: (a) to 

explain paradox of wave packet reduction  at measurings when the observer is included in 

system (introspection) (paradox of the Schrodinger cat); (b) to explain unobservability of 

superposition of macroscopic states by the external observer in real experiments (paradox of 

Wigner's friend); (c) to prove the full equivalence of multiworld and Copenhagen interpretations 

of  quantum mechanics; (d) to explain deviations from the exponential law at decay of particles 

and pass from one energy level on another (paradox of a kettle which never will begin to boil). 

    As already described above, in quantum mechanics the solution of the problem of alignment 

of thermodynamic time arrows is similar to classical mechanics. But there is one important 

exception. In the classical mechanics one microstate (a point in a phase space) corresponds to 

only one macrostate. In the quantum mechanics one microstate (wave function) can corresponds 

to the set of possible macrostates (quantum superposition of the wave functions corresponding to 

this macrostates). This situation appears in well-known paradox of "Schrodinger cat". 

   Multiworld Interpretation of a quantum mechanics is very popular currently. It states, that 

these different macrostates corresponds to the different worlds.  These parallel worlds exist 

simultaneously and interfere (summing with each other). it is suggested as a solution of 

«Schrodinger cat» paradox. 

    But then the following question appears: Why we need to guess simultaneous existence of 

these worlds? Instead we can say: «System collapses in one of these macrostates with the 

probability defined by Bohr's rules. Why we need these mysterious parallel worlds? ». This point 

of view is named Copenhagen Interpretation. 

The following objections are usually given: 

1. We do not have any mechanisms describing the collapse in Copenhagen Interpretation. 

2. We accept that wave functions it is something really existing. 

3. These wave functions and their superposition satisfy to Schrodinger equations. 

4. Multiworld interpretation follows automatically from 1 and 2. 

5. Decoherence, which also is a consequence of Schrodinger equations, explains why we can see 

as a result only one of the worlds (with corresponding Bohr's probabilities). 

 
      But it is possible to object here: «Yes, we have no collapse mechanism. But we need not 

know it. We postulate such collapse. Moreover, we at all do not want to know this mechanism. 

Really, we are capable to describe and calculate any physical situation without this knowledge». 

 

But such approach meets following difficulties: 

1. We cannot specify or calculate an exact instant when there is this collapse. For macrobodies it 

is possible to specify only very narrow, but, nevertheless, a finite interval of time on which 

this collapse happens. 

2. For macrobodies there is enough clear split between the worlds (because of decoherence), but 

it is never full. Always there is small "overlapping" between the worlds (the interference 

terms, quantum correlations of the worlds) even for macrobodies. Decoherence, described 
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above, resolves a problem only partially. It “separates” macroworlds not completely, leaving 

their small "overlapping".  

3. There are specific models of collapse (so-called, GRW theory [16]). They can be verified 

experimentally. Such experiments did not give while any proof of existence of such collapse. 

They give only boundaries on parameters for such models (in the case that it is really true), 

defined by accuracy of experiment. 

 

But it is possible to object again: 

     

1. Yes, there is a problem to define exact collapse times. But precisely the same problem exists 

also in multiworld interpretation - in which instant the observer sees, in what of the possible 

worlds he has appeared? 

2. The problem of "overlapping" of the worlds also exists in the multiworld interpretation. 

Really, the observer sees in some instant only a one world. He can tell nothing about 

existence or not existence of other parallel worlds. So all predictions of the future (based on 

the Bohr's rules) he can conclude only on knowledge «his» world. But because of 

"overlapping" of the worlds (really very small) some effects appear which can not be based 

on his predictions. It means that quantum mechanics can not give even the exact probability 

prediction. 

3. It is possible to add one more uncertainty that exists in both interpretations. Let, for example 

that a superposition of two macrostates exists: «a live cat» and «a dead cat». Why the world 

splits (or collapses) on such two states? Why is a pair: («a live cat» - «a dead cat»), («a live cat» 

+ «a dead cat») not relevant? 

 

Three problems described above lead to uncertainty of the predictions done from quantum 

mechanics. It can not be found even within frameworks based on Bohr's rules. This uncertainty is 

very small for macrobodies, but it exists. It exists for all interpretations, only masking and 

changing its form.  

    Majority of interpretations try to overcome these problems. Actually different interpretation 

only “masks” the uncertainty problem, not solving it. 

 

4.     All told above about GRW theories is true. There is no necessity to use it instead of 

quantum mechanics. However it is not correct for Copenhagen Interpretation. The Copenhagen 

Interpretation reminds GRW very much, but one important feature is very differs from GRW. 

The Copenhagen Interpretation postulates the collapse only for one final observer. It does not 

demand the collapse from the rest macroobjects and observers. Physical experiment is described 

from a point of view of this final observer. The final "observer" is not some person possessing 

mysterious "consciousness". It is some standard macroscopic object. It is far from its state of 

thermodynamic equilibrium. The final observer is last in the chain of observers and macrobodies. 

Direction of his thermodynamic time arrows is chosen as "positive" direction. It is similarly to 

our previous paper [1]. This constrain on collapse leads to serious consequence which does not 

appear in GRW. Namely, the existence of the collapse in GRW can be verified experimentally, 

but in Copenhagen Interpretation the existence of the collapse can not be proved or disproved 

even in principle. Let us demonstrate it. We will consider thought experiments which allow to 

verify existence of the collapse predicted in GRW. Further we will demonstrate that these 

experiments can not be used for verification of the collapse in the Copenhagen Interpretation. 

 

a. Quantum mechanics, as well as classical, predicts Poincare's returns. And, unlike classical 

chaotic systems, the returns happen periodically or almost periodically. But because of the 

collapse in GRW such returns are impossible and can not observed experimentally. I.e. this fact 

can be used for experimental verification. 
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b. Quantum mechanics is reversible. At a reversion of evolution the system must return to an 

initial state. However, the collapse results in irreversibility. This fact also can be verified 

experimentally. 

c. We can observe experimentally the small effects related to the small quantum correlations 

which exist even after decoherence. In GRW this small effects disappear. 

 

    Suppose that we want to verify the collapse of the final observer in the Copenhagen 

Interpretation. Hence, we must include the observer to observable system. I.e. here there is 

introspection. We will demonstrate, that it is not impossible to verify existence (or not existence) 

of the collapse in Copenhagen Interpretation by the methods described above: 

 

a. Suppose, the observer waits for the return predicted by a quantum mechanics. But the observer 

is included to the system. I.e. at Poincare's return, he will return to his initial state together with 

the full system. Hence, his memory about his past will be erased. So the observer will not be 

possible to compare of an initial and finite state. It makes the verification of the existence (or not 

existence) of the observer's collapse experimentally impossible.   

b. The same reasons, as in item (a.), make impossible the experimental verification of the returns 

caused by the reversion of system evolution. 

c. For observation of the small effects (quantum correlation macrostates), the measuring split-

hair accuracy is necessary. But, as the observer is included into observed system (introspection) 

it is not possible to make full measurement of such system. (Figuratively speaking, the observer 

uses some "ink" to describe the full system state. But the "ink" is also part of the full system 

during intersection. So the "ink" must describe also itself!) Such system can be described by 

macroparameters only. It makes impossible experimental observation and calculation of the 

small effects of the quantum correlations. 

 
   As a matter of fact, first two items (a., b.) are related to a following fact which took place also 

in classical mechanics [1]. Decoherence (decomposition on macrostates) leads to the entropy 

increase (one macrostate replaces on the full set of possible macrostates). On the other hand, 

observation of the return (i.e. recoherence) is related to the entropy decrease. The observer is 

capable to carry out experimentally introspection only on finite time intervals when it has time 

arrow (i.e. a state far from thermodynamic equilibrium), and it does not change its direction. 

Thus, impossibility experimentally to distinguish the Copenhagen and Multiworld Interpretations 

it is closely related to the entropy increase law and the thermodynamic arrow of time. 

   Everything told above, makes impossible the experimental verification of the difference 

between the Copenhagen and Multiworld Interpretation. It makes their equivalent. Such 

statements about indistinguishability of these interpretations meet in the literature. However 

there, where this fact is usually stated, it is usually referred to impossibility to make such 

verification only practically for macrobodies (FAPP - for all practical purposes).  The 

understanding of its principal impossibility is absent. This incorrect understanding is a basis for 

erroneous deduction about «exclusiveness» of Multiworld Interpretation. We will demonstrate 

the clearest example [9]: 

 
"Proponents of the MWI might argue that, in fact, the burden of an experimental proof lies 

on the opponents of the MWI, because it is they who claim that there is new physics beyond 

the well tested Schrodinger equation." 

"Despite the name "interpretation", the MWI is a variant of quantum theory that is different from 

others. Experimentally, the difference is relative to collapse theories. It seems that there is no 

experiment distinguishing the MWI from other no-collapse theories such as Bohmian mechanics 

or other variants of MWI. The collapse leads to effects that are, in principle, observable; these 

effects do not exist if the MWI is the correct theory. To observe the collapse we would need a 

super technology, which allows "undoing" a quantum experiment, including a reversal of the 
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detection process by macroscopic devices. See Lockwood 1989 (p. 223), Vaidman 1998 (p. 257), 

and other proposals in Deutsch 1986. These proposals are all for gedanken experiments that 

cannot be performed with current or any foreseen future technology. Indeed, in these 

experiments an interference of different worlds has to be observed. Worlds are different when at 

least one macroscopic object is in macroscopically distinguishable states. Thus, what is needed is 

an interference experiment with a macroscopic body. Today there are interference experiments 

with larger and larger objects (e.g., fullerene molecules C60), but these objects are still not large 

enough to be considered "macroscopic". Such experiments can only refine the constraints on the 

boundary where the collapse might take place. A decisive experiment should involve the 

interference of states which differ in a macroscopic number of degrees of freedom: an impossible 

task for today's technology"        

   The correct proof of principal experimental unverifiability of collapse in Copenhagen 

Interpretation, as far as we know, meets only in this and previous papers [10-13]. It is possible to 

term it as the "Godel" theorem of impossibility for a quantum mechanics. Both its statement and 

its proof method really remind «the Godel theorem of incompleteness». 

     We here concentrate on this problem so much because of the following reasons. At first, the 

impossibility experimentally to distinguish the Copenhagen and Multiworld Interpretations is 

closely related to the entropy increase law and the thermodynamic arrow of time. Secondly, it is 

too much people sincerely, but wrongly believes, that Multiworld Interpretation (or other less 

fashionable Interpretations) completely solves all problems of quantum mechanics. Uncertainty 

already described above is such problem of quantum mechanics. It means that quantum 

mechanics using Bohr's rules have small uncertainty connected to small quantum correlation of 

the observer. How they are solved actually? These results can be concluded from the fact that the 

specified uncertainty exist in ideal dynamics over abstract coordinate time. In observable 

dynamics over the observer's time arrow it misses and is not observed experimentally in 

principle. 

 

1) Introspection. The same reasons already described above which do not allow to verify 

the collapse experimentally will not allow to discover experimentally the uncertainty 

specified in item 1 (an exact instant of the collapse) and item 2 (quantum 

correlations). So it is senseless to discuss it. 

2) External observation:  

a. If this observation does not perturb observable system then the collapse of the system and, 

hence, and indeterminacies [specified in item 1 (an exact instant of the collapse) and item 2 

(quantum correlations)] does not arise. So quantum mechanics can be verified precisely 

experimentally. Such unpertrubative observation is possible for macrobodies only theoretically. 

The necessary condition is a known initial state (pure or mixed) (Appendix A). 

b. the observed system is open. It means that there is a small interaction between observable 

system and the observer/environment. This small interaction masks uncertainty (specified in 

points 1 and 2) and makes impossible its experimental observation. 
 

   Here it is necessary to return to the uncertainty described in item 3. The majority of real 

observations correspond to two cases: the introspection cases (when the full description is 

impossible in principle) or the open system (perturbed with uncontrollable small external noise 

from the observer/environment). How to describe such open or incomplete systems? It becomes 

by input of macroparameters of system. Real observable dynamics of such parameters is 

possible for a wide class of systems. It does not include unobservable in realities «the parallel 

worlds», entropy reduction, quantum superposition of macrostates and other exotic, possible 

only in ideal dynamics. Observable dynamics is considered with respect to the thermodynamic 

time arrow of the real macroscopic nonequilibrium observer, weakly interacting with observable 

system and an environment (decoherence). Ideal dynamics is considered with respect to abstract, 

coordinate time. The problem of the pass from ideal to real dynamics is successfully solved in 
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other papers [14-15, 17-18]. The select of macrovariables is ambiguous, but also is not arbitrary. 

Macrovariables should be chosen so that at entropy increase random small external noise did not 

influence considerably their dynamics. Such macrovariables exist and are named pointer states 

[3, 17]. Presence of the selected states is a result of interaction locality in the real world. It means 

that the close particles interact stronger than far particles. If the force of interaction was defined, 

for example, by closeness of momentums the principal states would be absolutely others. So, the 

property of a locality is untrue over distances comparable with wave length. So radiowaves have 

field pointer states, strongly differing from particles pointer states. A situation here described, 

completely equivalent to [1] where were considered "appropriate" macrostates for classical 

mechanics. 

   What can be an example observable dynamics for quantum systems? These are described 

above GRW theories. To understand it we will return to the Copenhagen Interpretation. We can 

choose for "the final observer" in the Copenhagen Interpretation different nonequilibrium 

macrobodies. Theoretically, thus the collapse will see differently for such different observers. 

This appearance is named «paradox of Wigner’s friend». This appearance of ambiguity of the 

collapse in the Copenhagen Interpretation can be named «Quantum solipsism». It is made by 

analogy to similar philosophical doctrine. This problem can be resolved similarly to the paper 

[1]. The entropies of all weakly interacting macrobodies increase or decrease synchronously, 

because of alignment of thermodynamic time arrows. The collapse corresponds to entropy 

increase (one macrostate replaces on a set of possible macrostates). Hence, small interaction 

(decoherence) between macrobodies yields not only alignment of thermodynamic time arrows, 

but also sync of all moments of «collapse» for different observers. It makes «Quantum 

solipsism» for macrobodies though theoretically possible, but it is the extremely difficult 

realizable in practice. So this resolution of «Quantum solipsism» by the collapses differs from 

Copenhagen Interpretation where the observer's collapse cannot be prevented even theoretically. 

Discussed above GRW theories are, thus, for quantum mechanics description of the real 

observable dynamics of macrobodies (FAPP dynamics). It throws out effects not observed in 

reality. It is, for example, non synchronism in the macrobodies collapses moments and entropy 

decrease predicted by ideal dynamics.   

        Good illustration of the above described connection observed and ideal dynamicses is «the 

paradox of a kettle which never will begin to boil». It is related in quantum mechanics to a 

deviation from the exponential law of particles decay (or a pass from one energy level on 

another). Exponential character of such law is very important - the relative rate of decay does not 

depend on an instant. It means that the decaying particle has no "age". In a quantum mechanics, 

however, on small times the law of ideal dynamics of decay strongly differs from the exponential 

one. So when the number of measurements of a decaying particle state for finite time interval 

increases, the particle in limit of infinite number of measurements does not decays at all!  

   Let we observe a macrosystem consisting of major number of decaying particles. Here it is 

necessary to note, that particle decay happens under laws of ideal dynamics only between 

measurements. Measurements strongly influence dynamics of system as we described above. To 

transfer to the observable dynamics featured above, we should decrease perturbing influence of 

observation strongly. It is reached by increasing interval between observations. It must be 

comparable with a mean lifetime of unperturbed particles. For such large intervals of time, we 

get real observable dynamics of decay.  It is featured by an exponential curve, and the mean 

lifetime does not depend on a concrete interval between measurements. Thus, the exponential 

decay is a law of observable dynamics, not ideal dynamics of particles. (The same reason 

explains absence of Poincare's returns for this system.) 

 

3. The quantitative consideration of the problem. 
 

3.1 Definition of the basic concepts. 
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1) In classical mechanics a microstate is a point in a phase space. In quantum mechanics it 

corresponds to a wave function ψ (a pure state), and trajectories is wave function evolution in 

time. In classical mechanics the macrostate corresponds to a density distribution function in a 

phase space. In quantum mechanics it corresponds to a density matrix ρ. The density matrix 

form depends on the chosen basis of orthonormal wave functions. If ρρ≠ρ then it is in mixed 

state.   
2) The equations of motion for the density matrix   have the form: 

,L
t

i N
N 







 

where L is the linear operator: 
L ρ = H ρ - ρ H = [H, ρ] 
and H is the energy operator of the system, 
N - number of particles 
3) If A is the operator of a certain observable, then the average value of the observable can be 

found as follows: 
<A> =tr A ρ 

4) If the observation is introspection the full observation to is impossible. In case of external 

observation because of small interaction with the observer and instabilities of a observable 

chaotic system the full exposition also is senseless. Therefore introducing a finite set M of 

macrovariables is necessary: 
Aset = {A1, A2, …, AM}, 

Where M <<N 
These macrovariables are known with finite small errors: 
       ΔAi <<Ai, 1≤i≤M 
   This set of macrovariables corresponds to a macrostate with a density matrix ρset. 
All microstates answering to requirements 

{| <A1> - A1 | ≤ ΔA1, | <A2> - A2 | ≤ ΔA2, …, | <AM> - AM | ≤ ΔAM} 
 are assume to have equal probabilities. 
     To thermodynamic equilibrium corresponds to a macrostate ρE. It corresponds to a set of the 

microstates, satisfying to a requirement  
| <E> - E | ≤ Δ E (Δ E <<E), 
where E is the full system energy. 
All these microstates are assumed to have equal probabilities. 
5) In quantum mechanics ensemble entropy is defined via density matrix [15]: 

S =-k tr (ρ ln ρ),  
where tr stands for matrix trace. 
Entropy defined in such a way does not change in the course of reversible evolution: 

0
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6) Macroscopic entropy is defined as follows: 

a) For current ρ we find all corresponding sets of macrovariables  
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b) We find a matrix ρset for which all microstates, corresponding to the specified set of 

macroparameters, have equal probabilities 
c) Macroscopic entropy S =-k tr (ρset ln ρset) 

Unlike ensemble entropy macroscopic entropy (macroentropy) is not constant and can both to 

increase, and to decrease in time. For given energy E ± ΔE it reaches its maximum for 
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thermodynamic equilibrium. The direction of the macroentropy increase defines a direction of a 

thermodynamic arrow of time for the system. 
7) Like classical case the interaction locality results in fact what not all macrostates are 

appropriate. They should be chosen so that small noise did not influence essentially system 

evolution for entropy increase process. Such states are well investigated in quantum 

mechanics and named pointer states [3, 17]. Quantum superposition of such states is unstable 

with respect to small noise.  So such superposition is not, accordingly, pointer state. For 

macrosystems, close to the equilibrium, pointer states are usually correspondent to 

Hamiltonian eigenfunctions. 
8) Coarsened value of  (ρcoar) should be used to obtain changing entropy similarly to changing 

macroscopic entropy. We will enumerate ways to achieve it: 
a) We define a set of pointer states and we project a density matrix on this set. I.e. (a) we 

note a density matrix  in representation of these pointer states (b) we throw out 

nondiagonal terms of  and obtain ρcoar. So entropy:  

       S=-k tr (ρcoar ln ρcoar) 
b) We divide the system into some interacting subsystems (for example: the observer, the 

observable system and the environment). Then we define the full entropy as the sum of 

the entropies of these subsystems: 
           S=Sob+Sob_sys+Senv 

 

3.2 Effect of a weak coupling 

 

3.2.1 Small external perturbation. 

 
We can put our macrosystem of finite volume inside of an infinite volume system 

("environment", "reservoir") with some temperature. (This reservoir can be also vacuum with 

zero temperature.) We will suppose that this reservoir is in thermodynamic equilibrium, has the 

same temperature as a temperature of the finite system in equilibrium and weakly interacts with 

our finite system. Then it is possible to use the quantum version of "new dynamics", developed 

by Prigogine [14] for such infinite systems. Dynamics of our finite system with reservoir will be 

the same as its observable dynamics without reservoir with respect to its thermodynamic time 

arrow. Such description has sense only during finite time. It is time when the its thermodynamic 

time arrow exists (i.e. the system is not in equilibrium) and does not change its direction. 

 

3.2.2 Alignment of thermodynamic time arrows at interaction of 

macrosystems (the observer and the observable system). 

 
       It ought to be noted, that here our job is much easier, than in case of the classical mechanics. 

This is due to the fact that the quantitative theory of small interaction between quantum systems 

(decoherence, entangling) is well developed field [2-3, 17, 24-27]. We will not repeat these 

conclusions here. We will give only short results: 

  (a) Suppose that we have in some instant two macrosystems. One of them or both these 

macrosystems are in their quantum superposition of pointer states. The decoherence theory [2-3, 

17, 24-27] states, that small interaction between macrosystems very fast (decoherence time is 

much less than relaxation time to equilibrium) transforms such system into the mixed state. So 

the quantum superposition disappears. Such process of vanishing of quantum superposition of 

pointer states corresponds to the entropy increase. It follows from Poincare's theorem that the 

system (in coordinate time) should return to its initial state. There should be an inverse process 

of recoherence. But it will happen in both systems synchronously. It means, that any system can 

see only the decoherence and the entropy increase with respect to its thermodynamical time 

arrow. It means that both processes decoherence and time arrows will be synchronous in 
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interacting subsystems. It is especially worthy of note that we consider here a case of 

macroscopic systems. For small systems where large fluctuations of parameters are possible, 

similar alignment of thermodynamic time arrows and the instances of «collapses" for subsystems 

is not observed [6-7]. 

     (b) Now suppose that all macroscopic subsystems are in them pointer states. In the 

decoherence theory it is shown, that in the presence of small noise between its macroscopic 

subsystems the behavior of a quantum system is completely equivalent and is indistinguishable 

from behavior of the correspondent classical system [2-3, 17 , 24-27]. Thus, the analysis of 

alignment of thermodynamic time arrows is completely equivalent to the analysis made in paper 

[1].  

     (c) It is worthy of explanation which meaning the words "classical system" have here.  

It means, that in the theory there do not exist specific mathematical features of quantum theory. 

It is, for example, such features as not commuting observables, quantum superposition of pointer 

states. At that, these "classical theories" can be very exotic, include Plank's constant and are not 

reduced to laws of the known mechanics of macrobodies or waves. 

      Superconductivity, superfluidity, radiation of absolute black body, the superposition of 

currents in Friedman's experiment [19] is often named "quantum effects". They are really 

quantum in the sense that their equations of motion include Planck constant. But they are 

perfectly featured over macroscale by a mathematical apparatus of usual classical theories: or the 

theory of classical field (as pointer states), or the theory of classical particles (as pointer states). 

From this point of view, they are not quantum, but classical. In quantum theory featured objects 

simultaneously are both particles and probability waves. 

        It is worthy of note that in classical limit at room temperatures the quantum mechanics of 

large particles gives the theory of classical particles as pointer states (electron beams, for 

example). On the other hand light in weight particles give the classical field as pointer states 

(radiowaves). And these theories do not include Planck constant. 

     However, at high temperatures when radiation achieves high frequencies, light quanta are 

featured by the theory of classical particles as pointer states. They give, for example, a spectrum 

of absolute black body on high frequencies. Though this spectrum includes Planck's constant its 

dynamics of pointer states (particles) will be classical. For deriving this spectrum the quantum 

mechanics formalism is not necessary (Planck has derived this spectrum, nothing knowing about 

quantum physics mathematical apparatus). 

       Vice versa at low temperatures the particles start to be featured by classical fields as pointer 

states (superfluidity or superconductivity phenomena). For example, superconductivity is 

featured by classical wave of "order parameter". And though the equations, featuring this field, 

include Planck constant, but the equations correspond to mathematical apparatus of the classical 

field theory. These waves can be summed (superpose) with each other, similarly quantum. But 

quadrate of their amplitude does not define probability density. It defines density of Cooper pair. 

Such wave cannot collapse at measurement, like a probability quantum wave [20]. 

     For quantum-mechanical states of bosons at low temperatures pointer states are classical 

fields, and at high temperatures it's classical particles. The word "classical" is understood as a 

mathematical apparatus of the observable dynamics featuring their behavior, but not presence or 

lack of Planck constant in their equations of motion. 

     What happens in the intermediate states between classical fields and classical particles? It is, 

for example light in an optical wave guide (L>> λ>> λultraviolet), Lopt - the characteristic size of the 

macrosystem (the optical wave guide) (Appendix B), λ - light-wave length, λultraviolet- ultra-violet 

boundary of light). At use of macroscales and macrovariables, and taking into account small 

noise from the observer both descriptions («classical waves» and «classical beam of particles») 

are identical. They are equivalent and can be used as pointer states. The equivalent situation 

arises for a superconductor case where the role of particles or waves play elemental "excitation" 

in gas of Cooper pairs. 

     Let's carry out the simple calculation illustrating above.  
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Let E be energy of particle; k -Boltzmann constant, T-temperature, p - momentum, Δp - 

momentum uncertainty, λ - particle wave length, ω-frequency, Δx - a coordinate uncertainty; ћ - 

Planck constant. We will consider the "gas" of such particles which is in a cavity, filled with 

some material with distance between atoms a. a <<L, L - the characteristic size of the cavity. In 

vacuum a ~ (L
3
/N) 

⅓
, N-number of particles in the cavity. c -   light velocity (let suppose for 

simplicity that refraction index  in the cavity is close to 1). 

     

1) Firstly, let consider  light in weight particles which at room temperature have a velocity, close 

to light velocity c.  

E~pc; E~kT; p ~Δp; λ ~Δx; ΔpΔx ~ ћ; ω =E/ћ 

From here 

ћ ~ ΔpΔx ~ pλ ~ kTλ/c => λ ~ ћc/kT 

Requirement of classical field approach with frequency ω ~c/λ: 

L <λ or L ~ λ. From here L <ћc/kT or L~ћc/kT 

Requirement of approach of classical relativistic particles with E~ћc/λ and p=E/c: 

L>> λ. From here L>> ћc/kT 

 

2) Secondary, let consider   heavy particles bosons which at room temperature have a velocity 

v<<c 

p 
~ 

(Em)
½
; E~kT; p ~ Δp; λ ~ Δx; ΔpΔx ~ ћ; ω =E/ћ 

From here 

ћ ~ ΔpΔx ~ pλ ~ (kTm)
½

λ => λ~ћ /(kTm)
½
   

Requirement of classical field approach with frequency ω =p
2 
/(m ћ): 

L <λ or L ~ λ. From here L <ћ /(kTm)
½
 or  ~ћ/(kTm)

½
   

Requirement of approach of classical particles with energy E=p
2
/(2m) and momentum p=mv: 

L>> λ. From here L>> ћ/(kTm)
½
  

 

3) Let consider now heavy particles fermions which at room temperature have a velocity v <<c 

p 
~ 

(Em)
½
; E~kT; p ~Δp; ΔpΔx ~ ћ 

Δx ≤λ and λ≤a is a requirement of Pauli's principle for fermions. They cannot appear in the same 

state, so they are distributed in "boxs" with size a. 

From here 

ћ ~ ΔpΔx ≤ pλ ~ (kTm)
½

λ => a ≥λ≥ ћ/(kTm)
½
   

T≥TF = ћ
2
/(a

2
km) - Fermi's temperature when fermion gas transfers in a ground state and 

expression E~kT becomes untrue. 

At T <TF: E~EF=kTF; λ~ ћ/(EFm)
½
~ a   

Requirement of classical field approach: 

L  or ~L . But  it is impossible because  aL  

At FTT   approach of classical particles in quality pointer states with energy 
m

p
E

2

2

 and 

momentum mvp    is correct.  

At FTT    approach of classical particles in quality pointer states, prisoners in «boxes» with size 

a, with energy FEE ~ and momentum   2
1

~ mEp F  is correct. 

At FTT ~ we observe dynamics of “excitations” in the degenerated Fermi gas which is featured 

by particles or waves as pointer states for these “excitations”. 

      To create in experiment the paradox of “Schrodinger cat”, the quantum superposition of the 

pointer states is necessary, instead of superposition of classical waves. Therefore superposition 

of classical waves of "order parameter" or light waves is not related in any way to this paradox 

and does not illustrate it. 

      So, for example, experiment Friedman [19] states a superposition of opposite currents. But 

the superposition is itself pointer state for this case. This pointer state is classical, not quantum 
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superposition of pointer states as untruly it is usually declared. Really, the state of bosons system 

(Cooper pairs) is featured at such low temperature by a classical wave as it was demonstrated 

above. These waves of "order parameter" are pointer states. They differ from pointer states of a 

high-temperature current of classical particles having a well-defined direction of a motion. The 

superposition observed in Friedman experiment, is not capable to collapse to quantum-

mechanical sense: Its quadrate features not probability, but density of Cooper pairs [20]. It is no 

more surprising and no more "quantum", than usual superposition of electromagnetic modes in 

the closed resonator where spectrum of modes is discrete also. The only difference is that "order 

parameter" wave equations for pointer states include ћ. It is the only reason to use concept 

"quantum" for this case. 

 

          3.3 Resolution of Loshmidt and Poincare paradoxes within the 

framework of quantum mechanics. 
 

The state of quantum chaotic system in the closed cavity with finite volume is featured by a set 

of energy modes uk (r1, …, rN) with spectrum Ek distributed under the random law [8]. 

Let's write the expression for wave functions of a noninteracting pair of such systems: 
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The united equation is following: 
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At presence small interactions between the systems 
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, Ωkl-generally a set of random variables, fkl, uk, vl are eigenfunctions 

of corresponding Hamiltonians. 
    Received solutions are almost-periodic functions. Received period of return defines 

Poincare's period. Period of Poincare's return of full system is generally more periods of  both 

subsystems.  

  For resolution of Poincare and Loshmidt paradoxes (returns in these paradoxes contradict to 

entropy increase law) we will consider now three cases 

1) Introspection: At introspection the time arrow is always directed over entropy growth so the 

observer is capable to see only entropy growth with respect to this time arrow. Besides, 

return to an initial state erases memory about past. It does not allow the observer to detect 

entropy reduction. Thus, reduction of entropy and returns happen only with respect to 

coordinate time. But any experiment is possible with only with respect to time arrow of the 

observer. With respect to coordinate time entropy reduction and returns cannot be 

experimentally observed [1, 10-13].  
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2) External observation with small interaction between macrosystems: Small interaction 

results in alignment of the thermodynamic time arrows of the observer and observed 

systems. Accordingly, all arguments that are relevant for introspection again become 

relevant for this case. 

3) For very hardly realizable experiment with unperturbative observation (Appendix A) 

macroentropy reduction can really be observed. However, it is worthy of note, that in the 

real world "entropy costs" on the experimental organization of such unperturbative 

observations will exceed considerably this entropy decrease. Indeed, the observable system 

needs to be isolated very strongly from environment noise. 

 

    In classical systems the period of Poincare's return is the random variable strongly depending 

on an initial state. In quantum chaotic systems the period is well defined and does not depend 

considerably on an initial state. However, this real difference in behavior of quantum and 

classical systems is not observed experimentally even in absence of any explicit constraint on 

experiment time. Indeed, any real physical experiment has a duration that is much smaller than 

Poincare's period of macrobodies. Physical experiments are possible only during time while the 

thermodynamic time arrow exists (i.e. the system is not in a state of thermodynamic equilibrium) 

and does not change the direction. 

 

3.4 Decoherence for process of measurement 
 

3.4.1 Reduction of system at measurement [22-23]. 
 

Let’s consider a situation when a measuring device was at the beginning  in state | α0 ›, and the 

object was in superposition of states |ψ› = ∑ci|ψi›, where | ψi› 
-
  are experiment eigenstates. The 

initial statistical operator is given by expression 

ρ0=|ψ› |α0›‹α0| ‹ψ|                                                                                                                          (1) 

     The partial track of this operator which is equal to statistical operator of the system, including 

only the object, looks like 

trA(ρ0)=∑n‹φn|ρ0|φn› 

where | φn ›- any complete set of device eigenstates. Thus, 

trA(ρ0)=∑ |ψ› ‹φn|α0›‹α0|φn›‹ψ|=|ψ›‹ψ|,                                                                                          (2) 

Where the relation ∑ | φn ›‹ φn | = 1 and normalization condition for | α0 › are used. We have 

statistical operator correspondent to object state | ψ›. After measuring  there is a correlation 

between device and object states, so the state of full system including device and object is 

featured by a state vector 

|Ψ›=∑cie
iθi

|ψi›|αi›.                                                                                                                         (3) 

And the statistical operator is given by expression 

ρ=|Ψ›‹Ψ|=∑cicj
*
e

i(θi-θj)
|ψi›|αi›‹αj|‹ψj|.                                                                                               (4) 

The partial track of this operator is equal to 

 trA(ρ)=∑n‹φn| ρ |φn› = 

=∑(ij)cicj
*

 e
i(θi-θj)

 |ψi›{∑n ‹φn |αi›‹αj|φn›}‹ψj|= 

=∑(ij)cicj
*
δij |ψi›‹ψj|                                                                                                        (5) 

 (Since various states | αi › of device are orthogonal each other); thus, 

trA(ρ)=∑|ci|
2
|ψi›‹ψi|.                                                                                                                       (6) 

We have obtained statistical operator including only the object, featuring  probabilities |ci|
2 
for 

object states | ψi ›. So, we come to formulation of the following theorem. 

Theorem 1 (about measuring). If two systems S and A interact in such a manner that to each 

state | ψi › systems S there corresponds a certain state | αi› of systems A the statistical operator trA 

(ρ) over full systems (S and A) reproduces wave packet reduction for measuring, yielded over 

system S, which before measuring was in a state | ψ ›= ∑ici | ψ i›. 
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Suppose that some subsystem is in mixed state but the full system including this subsystem is in  

pure state. Such mixed state is named as improper mixed state. 

 

3.4.2 The theorem about decoherence at interaction with the macroscopic 

device. [21, 22] 
 

Let’s consider now that the device is a macroscopic system. It means that each distinguishable 

configuration of the device (for example, position of its arrow) is not a pure quantum state. It 

states nothing about a state of each separate arrow molecule. Thus, in the above-stated reasoning 

the initial state of the device | α0 › should be described by some statistical distribution on 

microscopic quantum states | α0, s›; the initial statistical operator is not given by expression (1), 

and is equal 

ρ0 = ∑s ps | ψ ›| α0, s› ‹α0, s |‹ ψ |.                                                                                                       (7) 

Each state of the device | α0, s › will interact with each object eigenstate | ψi›. So, it will be 

transformed to some other state | αi, s ›. It is one of the quantum states of set with macroscopic 

description correspondent to arrow in position i; more precisely we have the formula  

е
iH τ / ћ 

(| ψ ›| α0, s›) =е
iθi, s 

| ψ ›| αi, s›.                                                                                                 (8) 

 

Let's pay attention at appearance of phase factor depending on index s. Differences of energies 

for quantum states | α0, s ›  should have such values that phases θi, s (mod 2π) after time τ would be 

randomly distributed between 0 and 2π. 

From formulas (7) and (8) follows that at |ψ›= ∑ici|ψi› the statistical operator after measuring will 

be given by following expression: 

ρ = ∑ (s, i, j) pscicj
*

 e
i (θi,s  - θ j, s)

 | ψi ›| αi, s› ‹αj, s |‹ ψ j |                                                                         (9) 

As from (9) the same result (6) can be concluding. So we see that the statistical operator (9) 

reproduces an operation of reduction applied to given object. It also practically reproduces an 

operation of reduction applied to device only ("practically" in the sense that it is a question about 

"macroscopic" observable variable). Such observable variable does not distinguish the different 

quantum states of the device corresponding to the same macroscopic description, i.e. matrix 

elements of this observable variable  correspondent to states | ψi ›| αi, s› and | ψj ›| αj, s› do not 

depend on r and s. Average value of such macroscopic observable variable A is equal to 

tr (ρA) = ∑ (s, i, j) pscicj
*

 e
i (θi, s - θ j, s)

 ‹αj, s |‹ ψ j|A | ψ i ›| αi, s› = 

= ∑ (i, j) cicj
*

 ai, j∑s pse
i (θi, s- θ j, s)

                                                                                                     (10) 

As phases θi, s are distributed randomly, the sum over s are zero at i≠j; hence, 

tr (ρA) = ∑ |ci|
2
aii = tr (ρ ' A).                                                                                                      (11) 

where 

ρ ' = ∑ |ci|
2
 ps | ψ i ›| αi, s› ‹αj, s |‹ ψ j |                                                                                             (12) 

We obtain statistical operator which reproduces operation of reduction on the device. If the 

device arrow is observed in position i, the device state  for some s will be | αi, s ›. The probability 

to find state | αi, s› is equal to probability of that before measuring its state was | αi, s ›. Thus, we 

come to the following theorem. 

Theorem 2. About decoherence of the macroscopic device. Suppose that the quantum system 

interacts with the macroscopic device in such a manner that there is a chaotic distribution of 

states phases of the device. Suppose that ρ is a statistical operator of the device after the 

measuring, calculated with the help of Schrodinger equations, and ρ' is the statistical operator 

obtained as a result of reduction application to operator ρ. Then it is impossible to yield such 

experiment with the macroscopic device which would register difference between ρ and ρ '.  

It is the so-called Daneri-Loinger-Prosperi theorem [21]. 

For a wide class of devices it is proved that the chaotic character in distribution of phases 

formulated in the theorem 2  really takes place if the device is macroscopic and chaotic with 

unstable initial state. Indeed, randomness of phase appears from randomness of energies 

(eigenvalues of Hamiltonian) in quantum chaotic systems [8]. 
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        It is worth to note that though Eq. (12) is relevant with a split-hair accuracy it is only 

assumption with respect to (9). There from it is often concluded that the given above proof is 

FAPP. It means that it is only difficult to measure quantum correlations practically. Actually 

they continue to exist. Hence, in principle they can be measured. It is, however, absolutely 

untruly. Really, from Poincare’s theorem about returns follows that the system will not remain in 

the mixed state (12), and should return to the initial state (7). It is the result of the very small 

corrections (quantum correlation) which are not included to (12). Nevertheless, the system 

featured here | αi, s › corresponds to the introspection case, and consequently, it is not capable to 

observe experimentally these returns in principle (as it was shown above in resolution of 

Poincare and Loshmidt paradoxes). Hence, effects of these small corrections exist only on paper 

in the coordinate time of ideal dynamics, but it cannot be observed experimentally with respect 

to thermodynamic time arrow of observable dynamics of the macroscopic device. So, we can 

conclude that Daneri-Loinger-Prosperi theorem actually results in a complete resolution (not 

only FAPP!) of the reduction paradox in principle. It proves impossibility to distinguish 

experimentally the complete and incomplete reduction. 

     The logic produced here strongly reminds Maccone’s paper [4]. It is not surprising. Indeed, 

the pass from (7) to (12) corresponds to increasing of microstates number and entropy growth. 

And the pass from (12) in (7) corresponds to the entropy decrease. Accordingly, our statement 

about experimental unobservability to remainder quantum correlation is equivalent to the 

statement about unobservability of the entropy decrease. And it is proved by the similar methods, 

as in [4]. The objection [6] was made against this paper. Unfortunately, Maccone could not give 

the reasonable replay [28] to this objection. Here we will try to do it ourselves. 

      Let’s define here necessary conditions. 

Suppose A is our device, and C is the measured quantum system. 

The first value, the mutual entropy S (A: C) is the coarsened entropy of ensemble (received by 

separation on two subsystems) excluding the ensemble entropy. As the second excluding term is 

constant, so S (A: C) describes well the behavior of macroentropy in time: 

S (A: C) = S (ρA) + S (ρC) − S (ρAC), 

Where S = - tr (ρ ln ρ),  

The second value I (A: C) is the classical mutual information. It defines which maximum 

information about measured system (Fj) we can receive from indication of instrument (Ei). The 

more correlation exists between systems, the more information about measured system we can 

receive:  

I (A: C) = maxEi⊗FjH (Ei:Fj), where 

H (Ei: Fj) = ΣijPij log Pij −Σ ipi log pi −Σ jqj log qj  

and Pij = Tr [Ei ⊗ FjρAC], pi = Σj Pij and qj = Σi Pij 

given POVMs (Positive Operator Valued Measure) Ei and Fj for A and C respectively. 

Maccone [4] proves an inequality 

S (A: C) ≥ I (A: C) (13) 

He concludes from it that entropy decrease results in reduction of the information (memory) 

about the system A+C and C. 

But (13) contains an inequality. Correspondingly in [6] an example of the quantum system of 

three qubits is supplied. For this system the mutual entropy decrease is accompanied by mutual 

information increases. It does not contradict to (13) because mutual entropy is only up boundary 

for mutual information there.  

Let’s look what happens in our case of the macroscopic device and the measured quantum 

system 

Before measurement (7) 

S (A: C) = - ∑sps log ps +0 + ∑sps log ps=0 
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Ei-corresponds to the set | α0, s ›, Fj - | ψ› 

I (A: C) = - ∑sps log ps +0 + ∑sps log ps=0 = S (A: C) 

In the end of measurement from (12)  

S (A: C) = - ∑i|ci|
2
 log |ci|

2
 - ∑s, i|ci|

2
ps log |ci|

2
ps + ∑s, i|ci|

2
ps log |ci|

2
ps = - ∑i|ci|

2
 log |ci|

2
 

 

Ei-corresponds to the set | αi, s ›, Fj - | ψj› 

I (A: C) = - ∑i|ci|
2
 log |ci|

2
 - ∑s, i|ci|

2
ps log |ci|

2
ps + ∑s, i|ci|

2
ps log |ci|

2
ps =  

- ∑i|ci|
2
 log |ci|

2 
= S (A: C) 

   Thus, our case corresponds to 

I (A: C) = S (A: C)                                                                                                                       (14) 

 in (13). No problems exist for our case. It is not surprising – the equality case in (13) 

corresponds to macroscopic chaotic system. The system supplied by the objection [6] is not 

microscopic. It demonstrates the widely known fact that such thermodynamic concepts as the 

thermodynamic time arrows, the entropy increase and the measurement device concern to 

macroscopic chaotic systems. Both the paper [6] and the subsequent paper [7] describe not 

thermodynamic time arrows but, mainly, strongly fluctuating small systems. No thermodynamics 

is possible for such small systems as three cubits. The useful outcome of these papers is equality 

(14). It can be used as a measure for macroscopicity of chaotic quantum systems. On the other 

hand, the difference between mutual information and mutual entropy can be a criterion of 

fluctuations value. 

   The paper of David Jennings, Terry Rudolph "Entanglement and the Thermodynamic Arrow of 

Time" is very interesting. But the Thermodynamic Arrow of Time is not applicable for 

microsystems. It is a nice paper about quantum fluctuation, but not a paper about 

Thermodynamic Arrow of Time. In the Abstract of the paper “Entanglement and the 

Thermodynamic Arrow of Time” the authors write: "We examine in detail the case of three 

qubits, and also propose some simple experimental demonstrations possible with small numbers 

of qubits." But no thermodynamics is possible for such a microsystem. D. Jennings and T. 

Rudolph (like Maccone) don't understand that category "thermodynamic arrow of time" is 

correct only for large macrosystems. Using these categories for small fluctuating systems has no 

physical sense. They also (like Maccone) use incorrect definition of macroscopic thermodynamic 

entropy. We also give (instead of Maccone) the correct reply to “Comment on "Quantum 

Solution to the Arrow-of-Time Dilemma"”. The correct reply is that no contradictions (found in 

this Comment) appear for macroscopic systems. Only for a microscopic system such 

contradictions exist. But the concepts “the Thermodynamic Arrow of Time” and “the entropy 

growth law” is not relevant for such systems. We illustrate this fact by consideration of a 

quantum chaotic macrosystem and demonstrate that no contradiction (found by David Jennings, 

Terry Rudolph for a microscopic system) exists for this correct thermodynamical case. It must be 

mentioned that big size of a system (quantum or classic) is also not an enough condition for a 

system to be macroscopic. The macroscopic system (considered in Thermodynamics) must also 

be chaotic (quantum or classic) and has small chaotic interaction with its environment/observer 

resulting in decoherence (for quantum mechanics) or decorrelation (for classical mechanics).  It 

should be also mentioned that thermodynamic-like terminology is widely and effectively used in 

quantum mechanics, quantum computers field, and information theory. The big number of the 

examples can be found in the references of Jennings’s and Rudolph’s paper. The other nice 

example is Shannon’s entropy in information theory. But usually an author (using such a 

thermodynamic-like terminology) does not consider such a paper as analysis of classical 

Thermodynamics. Contrarily Jennings and Rudolph “disprove” the second law of 

Thermodynamics on the basis of the irrelevant microscopic system (in their Comment) and give 

(also in this Comment) the announcement of their next paper «Entanglement and the 

Thermodynamic Arrow of Time" as a correct consideration and a disproof of the second law. 

 
4. Conclusion. 



 17 

 

     In the paper the analysis of thermodynamic time arrow in quantum mechanics is presented. It 

is in many aspects similar to classical case. The important difference of quantum systems from 

classical ones exists. One microstate in quantum mechanics can correspond not to one 

macrostate, but to a set of macrostate. It is named quantum superposition of macrostates. For this 

case considering thermodynamic time arrow by means of the decohernce theory give resolution 

of the quantum paradoxes. These paradoxes related to a wave packet reduction (collapse). 

 

Appendix A. Unpertrubative observation in the quantum and classical mechanics. 

 

       It is often possible to meet a statement, that in the classical mechanics in principle  it is 

possible always  to organize unpertrubative observation. On the other hand in a quantum 

mechanics interaction of the observer with the observable system at measurement is inevitable. 

We will show that both these statements are generally untrue. 

         Let us first define the nonperturbative observation [10-11, 30-31] in QM. Suppose we have 

some QM system in a known initial state. This initial state can be either a result of some 

preparation (for example, an atom comes to the ground electronic state in vacuum after long 

time) or a result of a measurement experiment (QM system after measurement can have a well 

defined state corresponding to the eigenfunction of the measured variable). We can predict 

further evolution of the initial wave function. So in principle we can make further measurements 

choosing measured variables in such a way that one of the eigenfunctions of the current 

measured variable is a current wave function of the observed system. Such measuring process 

can allow us the continuous observation without any perturbation of the observed quantum 

system. This nonperturbative observation can be easily generalized for the case of a known 

mixed initial state. Really, in this case the measured variable at each instant should correspond to 

such set of eigenfunctions that the density matrix in representation of this set at the same instant 

would be diagonal. 

     For example, let us consider some quantum computer. It has some well-defined initial state. 

An observer that known this initial state can in principle make the nonperturbative observation 

of any intermediate state of the quantum computer. 

    It is especially worthy of note that such unpertrubativе observation is possible only under 

condition of a known initial state. But, an observer that doesn’t know the initial state can not 

make such observation, because he can not predict the intermediate state of the quantum 

computer. 

     Let's consider now classical mechanics. Suppose that a grain of sand lies on a cone vertex. 

The grain of sand has infinitesimally small radius. The system is in the Earth field of gravity. 

Then attempt to observe system even with infinitesimal perturbation will lead to a disbalance 

with the indefinite future through a terminating interval of time. Certainly, the reduced example 

is exotic - it corresponds to a singular potential and an infinitesimal object. Nevertheless, similar 

strongly labile systems are good classical analogues of quantum systems. Among them it is 

possible to search for analogies to quantum systems and quantum paradoxes. Having introduced 

a requirement, that classical measuring renders very small, but not zero perturbation on measured 

system, it is possible to lower requirements to a singularity of these systems.  

    Very often examples can be met of "purely quantum paradoxes", which     do not ostensibly 

have analogy in the classical mechanics. One of them is Elitzur-Vaidman paradox [29] with a 

bomb which can be found without its explosion: 

     Suppose that the wave function of one light quantum branches on two channels. In the end 

these channels the waves again unite, and there is an interference of the two waves of 

probability. A bomb inserted to the one from the two channels will destroy process of 

interference. Then it allows us to discover the bomb even for a case when the light quantum 

would not detonate it, having transited on other channel. (The light quantum is considered 

capable to detonate the bomb) 



 18 

      Classical analogy of this situation is the following experiment of classical mechanics: 

     In the one of the channels where there is no bomb, we throw in a macroscopic beam of many 

particles. In other channel where, maybe, there is the bomb, we will throw in simultaneously 

only one infinitesimally easy particle. Such particle is not capable to detonate the bomb. It will 

be throw out it back. If the bomb is not present, the particle will transit the channel. On an exit of 

this channel for the bomb we will arrange the cone featured above with the grain of sand with 

infinitesimal radius on the cone vortex. If our infinitesimally easy particle would throw down the 

grain of sand from the vertex it means, that the bomb is not present. If the grain of sand would 

remains on the vertex after an exit of particles beam from the second channel it means, that the 

bomb is.   

      In the given example infinitesimally easy particle is analogue of an "imponderable" wave 

function of the light quantum. But the light quantum is sensitive to behavior of this 

"imponderable" wave function. As well the grain of sand with infinitesimal radius on the cone 

vertex is sensitive with respect to infinitesimally easy particle.  

   Summing up, it is possible to say, that the difference between quantum and classical systems is 

not so fundamental, as it is usually considered. 

 

Application B.  Expansion on modes at arbitrary boundary conditions. 

 

      Often there is a problem of description of radiation in a closed cavity filled by some 

substance. Usually it becomes by expansion of radiation on modes. These modes are a set of 

eigenfunctions of the wave equation for some cavity and for some boundary conditions. For 

example, it is a square cavity with periodical boundary conditions. Then the received radiation 

expansion is substituted to the wave equation for radiation. There the modes of the series are 

differentiated termwise. Thus, such radiation characteristic, as ω (k) is received. Here ω is 

frequency of a mode; k is a mode wave vector; |k | =2π/λ; λ is a mode wave length. 

        But here there is a purely mathematical problem. Suppose that the modes have been 

discovered for some shape of the cavity and for some boundary conditions.  For termwise 

differentiability uniform convergence in all points of space is required. It is automatically true 

for any radiation with the same shape of a concavity and boundary conditions as modes. But for 

any other case it not true. Modes are the full orthogonal set and any radiation it is possible to 

present as superposition of such modes. But generally the series converges nonuniformly (the 

series converges badly near cavity boundaries) and can not be termwise differentiable. The 

problem of possible necessity using different modes for different boundary conditions is 

discussed in Peierls's book [32]. However there is considered a case when some complete 

orthonormal set of modes exists for given boundary conditions. But a situation is possible that 

for such boundary condition no set of such modes are possible. Or the boundary conditions are 

not known, and only energy requirements on boundary are known. How can the problem be 

solved for such cases? 

      The point is that all perturbations in radiation are expending with a velocity which is not 

exceeding a light velocity in cavity v=c. It means, that any perturbation of initial conditions of 

radiation expands from a point x to a point x1 only over finite time (x-x1)/c. It means, that 

perturbations from walls will reach the cavity centre in time t=L/c, where L - the characteristic 

size of the cavity. Nonuniform convergence appears only near the cavity walls. So inside of the 

cavity far from walls the exact radiation field is almost precisely equal to the modes series during 

time L/c. Therefore this field has uniform convergence and can be termwise differentiable during 

time L/c.      

    To estimate correctly frequency of a mode ω (k) it is necessary, that its amplitude does not 

change essentially from walls perturbation over time t>>T. T=2π/ω(k) is time period of the 

mode. Therefrom we receive a requirement of cavity macroscopicity: 

 

2π/ω <<L/c 
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or  

 

L>> 2π(c/ω)   

 

ω - correspondent to maximum of frequencies ω(k). 

 

Let that this condition is fulfilled. 

   It means, that termwise differentiation of modes far from concavity walls can be made over 

timescales t<2π/ω=L/c. 

    On timescales t>L/c the outcome cannot be correct. Here usually use the energy conservation 

law and the entropy increase law. By means of these laws slow evolution of amplitudes A (t, r) 

and phases φ(t, r) of modes can be received: 

 

E (t, r) = Σi Ai (t, r) sin (ω (ki) t + kir + φ i (t, r))  

 

For vacuum: 

  

 ω (k) =с|k | 

  L>> λ 

 

Acknowledgment 

 
We thank Hrvoje Nikolic and Vinko Zlatic for discussions and debates which help very much 

during writing this paper.  

 

Bibliography 
 

1. Oleg Kupervasser, Hrvoje Nikolic, Vinko Zlatic  “The Universal Arrow of Time I: Classical 

mechanics”, Foundations of Physics 42, 1165-1185 (2012) 

http://www.springerlink.com/content/v4h2535hh14uh084/, arXiv:1011.4173 

2. M. Schlosshauer, “Decoherence and the Quantum-to-Classical Transition” (Springer, 2007) 

3. Zurek  W.H., “Decoherence, einselection, and the quantum origins of the classical” , 

REVIEWS OF MODERN PHYSICS, VOLUME 75, Issue 3, 2003 

4. Maccone L., “Quantum solution to the arrow-of-time dilemma”, Phys.Rev.Lett., 

103:080401,2009 

5. Oleg Kupervasser, Dimitri Laikov, Comment on "Quantum Solution to the Arrow-of-Time 

Dilemma" of L. Maccone, 17th World Multi-Conference on Systemics, Cybernetics and 

Informatics: WMSCI 2013, arXiv:0911.2610 

6. D. Jennings, T. Rudolph, Comment on "Quantum Solution to the Arrow-of-Time Dilemma" 

of L. Maccone, Phys. Rev. Lett. 104, 148901 (2010). 

7. D. Jennings, T. Rudolph, “Entanglement and the Thermodynamic Arrow of Time”, Phys. 

Rev. E, 81:061130,2010 

8. Stockmann “Quantum Chaos”, Cambridge University Press (2000) 

9. Stanford encyclopedia of Philosophy: Many-Worlds Interpretation of Quantum Mechanics,  

http://plato.stanford.edu/entries/qm-manyworlds/ 

10. O. Kupervasser, arXiv:0911.2076. 

11. O. Kupervasser, D. Laikov, arXiv:0911.2610 

12.  O. Kupervasser, nlin/0508025 

13. O. Kupervasser, nlin/0407033 

http://arxiv.org/find/cond-mat/1/au:+Kupervasser_O/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Nikolic_H/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Zlatic_V/0/1/0/all/0/1
http://www.springerlink.com/content/v4h2535hh14uh084/
http://rmp.aps.org/toc/RMP/v75/i3
http://arxiv.org/find/quant-ph/1/au:+Kupervasser_O/0/1/0/all/0/1
http://arxiv.org/find/quant-ph/1/au:+Laikov_D/0/1/0/all/0/1
http://arxiv.org/abs/0911.2610
http://plato.stanford.edu/entries/qm-manyworlds/


 20 

14. Ilya Prigogine,   «From being to becoming: time and complexity in the physical      sciences», 

W.H. Freeman, San Francisco, 1980. 

15.  Karl Blum  Density Matrix Theory and Applications, Plenum Press, New York, 1981 

16. Ghirardi, G.C., Rimini, A., and Weber, T. (1985). "A Model for a Unified Quantum 

Description of Macroscopic and Microscopic Systems". Quantum Probability and 

Applications, L. Accardi et al. (eds), Springer, Berlin. 

17. Wheeler, J.A.; Zurek, W.H  Quantum Theory and Measurement, Princeton University Press, 

Princeton, N.J, 1983  

18. Klimontovich, L.  Statistical Physics , Harwood, New York, 1986 

19. Jonathon Friedman et al., "Quantum superposition of distinct macroscopic states", Nature, 

406, 43-46 (Jul. 6, 2000)  

20. Alexey Nikulov, Comment on “Probing Noise in Flux Qubits via 

Macroscopic Resonant Tunneling”, arXiv:0903.3575v1  

21. Daneri A., Loinger A.,  Prosperi G. M., Quantum theory of measurement and ergodicity 

conditions, Nuclear Phys., 1962, v 33, p.297-319 

22. Anthony Sudbery. Quantum Mechanics and the Particles of Nature: An Outline 

for Mathematicians. Cambridge University Press, New York, 1986 

23. J. von Neumann Mathematische Grundlagen der Quantemechanik, Springer, Berlin, 1932 

24. H.D. Zeh, The Physical Basis of the Direction of Time (Springer, Heidelberg, 2007). 

25. H.D. Zeh, Entropy 7, 199 (2005). 

26. H.D. Zeh, Entropy 8, 44 (2006). 

27. Erich Joos , H. Dieter Zeh, Claus Kiefer, Domenico J. W. Giulini, Joachim Kupsch , Ion-

Olimpiu Stamatescu, “Decoherence and the Appearance of a Classical World in Quantum 

Theory”, p. 500, Springer, 2003  

28. Maccone L., A quantum solution to the arrow-of-time dilemma: reply , arXiv:0912.5394 

29. Avshalom Elitzur , Vaidman L. , Quantum mechanical interaction – free measurement, 

Found Phys., 29, 987-997 

30. Albert, D. Z, Quantum Mechanics and Experience. Harvard University Press, Cambridge, 

1992 

31. John Byron Manchak, Self-Measurement and the Uncertainty Relations, Department of 

Logic and Philosophy of Science, University of California. 

http://philpapers.org/rec/MANSAT 

32. Rudolf Peierls, Surprises in theoretical physics. Princeton, N.J.: Princeton University Press, 

1979 

 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Erich%20Joos
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=H.%20Dieter%20Zeh
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Claus%20Kiefer
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Domenico%20J.%20W.%20Giulini
http://www.amazon.com/s/ref=ntt_athr_dp_sr_5?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Joachim%20Kupsch
http://www.amazon.com/s/ref=ntt_athr_dp_sr_6?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Ion-Olimpiu%20Stamatescu
http://www.amazon.com/s/ref=ntt_athr_dp_sr_6?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Ion-Olimpiu%20Stamatescu
http://philpapers.org/rec/MANSAT

