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1 CHAPTER INTRODUCTION 

 

 

The main paradigm used in the modern development of new drugs consists in 
the following. Many diseases are associated with the functioning of certain 
proteins, so they must be blocked to cure diseases. For example, a target protein 
may belong to a virus, and its blockage disables the reproduction of a virus in an 
organism. Blockage is performed with the use of molecules that selectively bind 
to these proteins in an organism. Such molecules that serve as a basis for new 
drugs are called inhibitors. As a rule, inhibitors represent comparatively small 
organic molecules that bind to certain areas of target proteins. These areas are 
called binding sites or active sites. The search for such inhibitor molecules for a 
given target protein is the initial stage in the development of a new drug. The 
fast and efficient solution of this problem governs to a considerable degree the 
minimization of material expenditures and the duration of subsequent stages in 
the development of a new drug. With respect to time, the stage of developing 
new inhibitors takes nearly 50% of the total duration of the development of a 
new drug. 

The time and material expenditures at the stage of searching for inhibitors 
can considerably be reduced with the use of computer-aided molecular 
modeling methods [1], among which docking is of first importance. Docking is 
the positioning of molecules that are candidates to inhibitors (they are often 
called ligands, from Latin ligare that means to bind) at the active site of a target 
protein and the estimation of their binding energy. The stronger a molecule 
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binds to a protein, the better is an inhibitor and the more efficient is the drug 
based on this inhibitor. Docking is performed with the special molecular 
modeling software [2] that is also used on supercomputers. 

The precision of estimating the protein–inhibitor binding energy governs 
the efficiency of predicting the activity of an inhibitor: the higher is the binding 
energy, the more active is an inhibitor and the more efficient is the drug based 
on this inhibitor, as the required effect can be attained at a lower drug 
concentration. If the precision of calculating the protein–inhibitor binding 
energy is insufficiently high, the probability of predicting whether new 
synthesized compounds (ligands) will inhibit this protein is low, and a great deal 
of materials, which are used to synthesize ligands and measure their inhibiting 
activity, and corresponding time are wasted. A sufficiently high practical 
predictability is attained at an error in calculating the protein–inhibitor binding 
energy of lower than 1 kcal/mol. For this reason, the precision of calculating all 
the contributions to the protein–inhibitor binding energy must be maximally 
high in the molecular modeling of the interaction of ligands with target proteins. 

The precision of estimating the protein–inhibitor binding energy in 
molecular modeling is governed by many factors, e.g., the quality of a force field 
used for the description of intra- and intermolecular interactions, the efficiency 
of searching for a global minimum in the course of positioning an inhibitor in 
the active site of a target protein, the estimated contribution of the entropy 
component to the free protein–inhibitor binding energy, etc. Since the binding 
of an inhibitor to a protein in experiments (in vitro and in vivo) occurs in an 
aqueous solution, the presence of a solvent (water) must be taken into account, 
when calculating the protein–inhibitor binding energy. 

The effect of a solvent on the protein–inhibitor binding energy is 
predominantly determined via the desolvation energy, which represents the 
difference between the solvation energy of a protein–ligand complex and the 
solvation energies of individual protein and ligand. This contribution to the 
protein–ligand binding energy is caused by that a solvent (water) is forced out of 
the active site of a protein upon the binding of a ligand to a protein, and some 
atoms in a ligand and a protein's active site cease to interact with a solvent. 
Hence, to determine the desolvation energy, it is necessary to calculate the 
solvation energies of a protein, a ligand, and their complex. 

To calculate the free solvation energy, it is necessary to construct a solvent 
model. This may be done explicitly, considering a solvent as a set of a great 
number of molecules. However, this method needs comparatively high 
expenditures of computational resources in modeling, as the calculation of the 
observed effects requires us to perform the averaging over the state of solvent 
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molecules, for example, by the molecular dynamics or Monte-Carlo methods. 
For this reason, implicit (often called continual) solvent models [3–14], in which 
a solvent is treated as a continuous (continual) medium with specified 
properties, including dielectric permittivity, are used more frequently. 

The present work is devoted to the DISOLV software [9,14-16] that allows 
us to find the free solvation energy of molecules and its gradients over the 
displacements of atoms in molecules, as the DISOLV software will be used to 
optimize the structure of molecules in a solvent with both the force field 
methods and the quantum-chemical methods, in which the gradient-based local 
optimization algorithms are usually applied. 

The free Gibbs energy sGΔ  for the process of solvation, i.e., the transition 
of a molecule fr om a vacuum into a solvent or, briefly, the solvation energy, is 
represented as the sum of the three components 

 

cavnppols GGGG Δ+Δ+Δ=Δ , 

 

where polGΔ  is the polar component of the interaction of a dissolved substrate 
molecules with a solvent, npGΔ  is the non-polar component of the interaction 
of a dissolved molecule with a solvent due to van der Waals forces of 
intermolecular interaction, and cavGΔ  is the cavitation component of the free 
solvation energy due to the formation of a cavity comprising a dissolved 
molecule in the volume of a solvent. 

In the DISOLV software, much attention is concentrated on the calculation 
of the polar component polGΔ  of the interaction of a molecule with a solvent 
(or, briefly, the polarization energy) using several methods, and the other 
solvation energy components npGΔ  and cavGΔ  are taken into account by a 
simple and rather widely applied method (see below). 

Within the framework of the used continual model, the solvation energy 
represents the energy of the electrostatic interaction of atomic charges in a 
molecule located in the cavity of a dielectric with surface charges induced by 
them on this surface. 

By now, many existing implicit solvent models and their software 
implementations have been integrated into larger packages, e.g., the quantum-
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chemical packages Gaussian [17], Gamess [18], MolPro [19], MOPAC [20], the 
molecular dynamics package Charmm [21], and the free programs for finding 
the polar component of the interaction with a solvent, e.g., DelPhi [22] or APBS 
[23], implement the numerical solution of the finite-difference approximation of 
the three-dimensional Poisson–Boltzmann equation. 

The objective of the present book is to describe the original algorithms that 
are designed to calculate the polar component of the solvation energy of 
molecules and aimed at solving the corresponding equations on the two-
dimensional surface of a solvent surrounding a molecule, their software 
implementation DISOLV written in C++, and its corresponding validation. At 
the end of the book, we perform the brief comparison of the characteristics of 
DISOLV with the corresponding characteristics of APBS [23] that implements 
the numerical solution of the Poisson–Boltzmann equation in a 3D space. 
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2 CHAPTER AN ALGORITHM FOR THE FORMATION OF A 
SMOOTH MOLECULAR SURFACE 

 

 

2.1 Introduction 

 

The objective of this chapter is to give the full and exhaustive description of an 
algorithm that allows us to form an optimally smooth molecular surface via 
primary and secondary rolling for its further use in: 

 

(a) molecular editors for demonstration purposes 

(b) the calculations of the solvation energy of a molecule (the difference 
between its free energies in solution and vacuum) and the analytical 
gradients of this energy. 

 

We shall realize this smoothness via the primary rolling of a molecule with 
spheres, whose radius is equal to the size of a solvent molecule (for the outer 
surface of a molecule), and the secondary rolling of a molecule with a variable-
radius sphere (for the inner surface of a molecule) with the elimination of all 
remaining irregularities. 
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We should emphasize the special importance of obtaining a smooth surface 
for these purposes. Really, in the case of a molecular editor, the smoothness of a 
surface is necessary for its triangulation and further comprehensive 
representation, which will not contain any physically meaningless irregularities 
dissipating our attention. 

In the case of calculating the electrostatic component of the solvation 
energy and its analytical derivatives, the smoothness of a surface is a necessary 
algorithmic stability condition, as fictitious superficial irregularities accumulate 
fictitious charges, thus leading to instability in the operation of an algorithm and 
great numerical errors [24-26]. 

For this reason, the formation of a smooth surface is not only an interesting 
mathematical problem, but is also practically important. The primary and/or 
subsequent secondary rolling algorithm described in this chapter was used as the 
base for developing the following software: PQMS [27], MSMS [28], Totrov and 
Abagyan's program [29], SIMS [30], TAGSS [31–33] and its improved version 
implemented as a subroutine of DISOLV [9,15,16]. These software and 
algorithms served as the base for creating the successfully operating molecular 
editor [33] and licensing the program for the calculation of the solvation energy 
and its derivatives [9,15,16]. 

What is the originality of our work in comparison with the other studies 
[27-32,34-37] that analyze the primary and/or secondary rolling of a molecular 
surface? First, it consists in completeness: we have considered all the possible 
cases of irregularity and showed the possibility of smoothing for them. Second, 
we try to smooth them optimally. This means that we try not only to obtain 
smoothness, but also to avoid to an ultimately possible degree the appearance of 
surface domains that, although rather smooth, are nevertheless very similar to 
irregularities (i.e., to avoid the appearance of very narrow "channels" and surface 
domains with a very small curvature radius). For all we know, this problem has 
been solved fully and exhaustively only in our work. 

However, we should note that the problem of constructing a smooth 
surface without any additional constraints may be solved trivially via the simple 
circumscription of a sphere around a molecule. What are these constraints? 

First, the atomic radii are well-defined parameters, which may not be 
arbitrarily varied. When the given algorithm is used to image a molecule in a 
molecular editor, the radii of its atoms are determined by the sizes of electron 
shells (so-called van der Waals radii [38,39], different sets of which are available 
in the literature [38-40]). When they are used to calculate the solvation energy, 
the initial ("rough") radii are specified as for the first case, but then refined so 
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that the calculated solvation energies also correspond to their experimental 
values. 

Second, if a molecule is submerged into a solution, the radius of solvent 
molecules is also a well-defined value, which may not be arbitrarily varied. This 
radius undoubtedly has some effect on the interface between a solution and a 
molecule itself and selected from the same above described reasoning as for the 
radius of atoms in a molecule. 

Let us note that the above mentioned radii rather strongly restrict the 
possibility of varying the surface of a molecule. But they nevertheless hold 
enough opportunities for us to make it smooth. 

Moreover, we wish to make it not simply smooth, but optimally smooth. In 
the given case, optimality is understood to mean that we (a) not only search for 
a smooth surface, but also try to reduce its curvature without losing surface 
features and, in addition, (b) strive to decrease the Cartesian distance between 
non-adjacent surface domains. These domains are close to each other spatially, but 
remote in the case of measuring the distance between them along the surface. 
To estimate the degree of smoothness, we specify the maximum critical distance, at 
which non-adjacent surface domains are allowed to approach each other in the 
algorithm. If this approach distance is smaller than the critical distance, there 
occurs a similar-to-irregularity situation, which requires secondary rolling. 

There exist the two types of surfaces surrounding a molecule [41]: 

 

(1) SAS, a solvent accessible surface, is formed by the centers of solvent 
molecules tangent to a substrate molecule. The number of solvent 
molecules tangent to the surface of a molecule is proportional to the 
SAS area. 

(2) SES, a solvent excluded surface. The volume occupied by a solvent lies 
outside the volume enveloped by this surface. The substrate itself lies 
completely inside this volume. 

 

SAS can be obtained by rolling a substrate molecule with a solvent molecule 
and marking the positions of its center. Rolling is the displacement of a solvent 
molecule along the surface of a substrate and its sequential contact with all the 
accessible points of this substrate (Fig. 2.1). For simplicity, a solvent molecule 
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may be replaced with a rolling sphere (a sphere circumscribed around a solvent 
molecule) [42-43]. 

 

 
 

Fig.2.1 Primary rolling of a surface (see [9]). 

 

A molecular SES may be described as follows [3,44]: 

 

(1) Smoothedly, replacing it with simple structures like [45-52] 

 

(a) A sphere, 

(b) An ellipsoid, or 

(c) A cylinder; 

 

(2) In details, reproducing all the inflections on the surface of a molecule 

 

(a) By coating atoms with van der Waals spheres; 
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(b) By coating chemical groups of atom with spheres; 

(c) As described in the two previous methods, but filling the remaining 
empty space inside SES with fictitious spheres (as implemented in 
the GEPOL software) [34-37]; and 

(d) With the molecular electron density level surface [53] determined 
via quantum mechanics or the other types of functions employed 
for the construction of level surfaces [54-58]. This method 
encounters serious difficulties: a level surface may also be non-
smooth; its implicit definition complicates triangulation; it is 
difficult to fit functions giving us a surface that is close to real and 
determined by the van der Waals radii of atoms; and 

(e) By bridging the spheres described in (a) and (b) with convex and 
concave surface elements [29,30]. 

 

The smoothest and most realistic surface can be obtained by method 2e 
considered in our work. This method allows us to obtain SES in the same 
manner as SAS by rolling the outer surface of a molecule with a sphere and 
taking:  

 

(1) the positions of points of contact between a rolling sphere and atoms; 

(2) the rolling sphere's geodesic arc segments that pass through two points 
of contact between a rolling sphere and atoms; 

(3) the segments of the lower part of a rolling sphere between its geodesic 
arc segments that pass through two points of contact between a rolling 
sphere and atoms (primary rolling, Fig. 2.1). 

 

Such a technique of determining SES was first proposed in [59]. The 
proposed method was further developed in [29, 60-64]. However, thus obtained 
SES may prove to be non-smooth [28]. For its further smoothing, the inner 
surface of a molecule may be rolled again (secondary rolling, Figs. 2.2 and 2.3), as 
was originally proposed in [30]. 

This may raise the question: why are we sure that secondary rolling will 
successfully smooth all irregularities and no tertiary, quaternary, and so forth 
rolling will be required? There is the following argument for this: we have no 
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possibility of varying the radii of atoms and primary rolling spheres. They are 
constant predetermined values. At the same time, the secondary rolling radius is 
an arbitrarily selected value and may be selected so as to be various even for the 
rolling of different domains of the same surface.  

 

 

 

Fig. 2.2 Secondary rolling of a surface (see [9]). 

 

 

Fig. 2.3 Applying the method of secondary rolling to the geometric 
configuration of several atoms. 

 

It is intuitively clear that we can "smooth" anything, selecting the secondary 
rolling radius as equal to an infinitely small value. Really, there are no problems 
for the smooth rolling of any irregularity within an infinitely small radius. 
However, we strive to obtain a surface that is not merely smooth, but optimally 
smooth. In other words, it must not contain any elements that, although rather 
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smooth, are nevertheless similar to irregularities. For this reason, we should try 
to perform secondary rolling with a maximum possible radius, taking into 
account the geometric hindrances of a surface. This makes the algorithm of 
secondary rolling nontrivial enough. 

A rolling surface is composed by surface segments of the two types: 
spherical and toroidal. They are divided into fragments of the five types: 
spherical elements of van der Waals atomic spheres, concave spherical elements 
of primary rolling, toroidal elements of primary and secondary rolling, and 
convex spherical elements of secondary rolling (Fig. 2.4). 

The primary and secondary rolling radii and the critical distance have a clear 
physical meaning. The primary rolling radius is equal to the radius of a sphere 
circumscribed around a solvent molecule. The secondary rolling radius and the 
above defined critical distance determine the minimum curvature of a molecular 
boundary. The lower limits for the secondary rolling radius and the above 
defined maximum critical distance are associated with the "smearing" of 
electron charge clouds, which can not give very acute angles and narrow necks 
and channels that may appear after primary rolling owing to the Heisenberg's 
uncertainty relation between the coordinate and impulse of an electron. 

 

 

 

Fig. 2.4 Molecular surface composed of the five types of fragments: spherical 
elements of van der Waals atomic spheres, concave spherical elements of 

primary rolling, toroidal fragments of primary and secondary rolling, and convex 
spherical elements of secondary rolling. 
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10 CHAPTER CONCLUSIONS 

 

 

In the present work, we considered one of the aspects of improving the 
precision of the computer-aided prediction of the inhibiting activity of 
molecules that are candidates to inhibitors for specified target proteins, namely, 
the allowance for the effect of a solvent on the protein–ligand binding energy. 
The physical foundations of the four implicit (continual) solvent models 
implemented in the DISOLV software, such as PCM, COSMO, SGB, and PCM 
with enlarged elements, were described in details, and the methods of solving 
the corresponding equations and the foundations of the algorithm used to 
construct the surfaces in these models and calculate the gradients of the energy 
of a molecule in a solvent were discussed. The latter gradients are needed in the 
DISOLV software for the local optimization of the energy of a molecule in a 
solution. The DISOLV validation results that showed not only the possibility of 
attaining a good precision of calculations (at arbitrary shifts of a triangulation 
grid) of better that several tenths of kilocalories per mole over reasonable time 
periods for such large macromolecules as proteins, but also a good agreement 
(root-mean-square deviation, 0.8 kcal/mol) of the calculated Gibbs energies of 
dissolution of a molecule in water, i.e., the energy of transfer of a molecule from 
a vacuum into water, with their experimental values for several hundreds of 
neutral molecules were represented. For molecular ions, the root-mean-square 
deviation between the calculated and experimental solvation energies is 
considerably higher (10 kcal/mol), but this value also lies within the limits of 
measurement error in most cases. On the whole, the validation results show that 
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the DISOLV software can be used in the post-processing regime to refine the 
protein–ligand binding energy estimate given by the docking program. Recently, 
the new method “Multicharge Approximation“ [121] was suggested for free 
solvation energy calculation. The authors of [121] demonstrated that 
“Multicharge Approximation“ has the same precision as DISOLV, but is much 
faster. However, there was considered the version of DISOLV with non-
adaptive algorithm for the triangulation of a smooth molecular surface in [121]. 
Using the adaptive algorithm for the triangulation of a smooth molecular 
surface, considered in Chapter 2 of this book, allows overcoming this 
disadvantage. 
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Continuum Solution Models 
for Computer Aided Drug Design 
 

he main paradigm used in the modern development of new drugs consists 
in the association of a disease with the functioning of certain proteins, so 

they must be blocked to cure diseases. Blockage is performed with the use of 
molecules that selectively bind to these proteins in an organism (inhibitors). The 
time and material expenditures at the stage of searching for inhibitors can 
considerably be reduced with the use of computer-aided molecular modeling 
methods. The precision of estimating the protein–inhibitor binding energy 
governs the efficiency of predicting the activity of an inhibitor. The effect of a 
solvent on the protein–inhibitor binding energy is predominantly determined via 
the free solvation energy. To calculate the free solvation energy, it is necessary to 
construct a solvent model. Implicit (often called continual) solvent models, in 
which a solvent is treated as a continuum (continual, continuous) medium with 
specified properties, including dielectric permittivity, are used more frequently. 
We consider in the book these continuum solution models. 
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