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Preface

This book deals with solving mathematically the unsteady flame propagation
equations. New original mathematical methods for solving complex nonlinear
equations and investigating their properties are presented. Pole solutions for flame
front propagation are developed. Premixed flames and filtration combustion have
remarkable properties: the complex nonlinear integro-differential equations for
these problems have exact analytical solutions described by the motion of poles in a
complex plane. Instead of complex equations, a finite set of ordinary differential
equations is applied. These solutions help to investigate analytically and numeri-
cally properties of the flame front propagation equations.

The author solves mathematically unsteady flame propagation equations,
describes new original methods for solving complex nonlinear equations and
investigating their properties, and addresses open problems existing in the field of
flame front propagation.

The theories (Laplacian growth, filtration combustion, premixed flame propa-
gation) described in the book have many engineering and scientific applications, for
example: investigation of burning in Ia supernovae; designing root modules and
control of transport processes in space greenhouses; NASA Announces
Microgravity Combustion Science Research Grants in Filtration Combustion for
Microgravity Applications in 2002; Microgravity Fluids and Combustion Research
was carried out at NASA Glenn Research Center; Microgravity smolder spread
over a thin cellulosic fuel was studied with Radiative Ignition and Transition to
Spread Investigation (RITSI) apparatus in the Glovebox Facility on the STS-75
USMP-3 space shuttle mission.

In Chap. 1 we describe basic concepts and problems in flame front propagation;
give a review of many relevant papers and books in this field.

In Chap. 2 we investigate the problem of flame propagation. This problem is
studied as an example of unstable fronts that wrinkle on many scales. The analytic
tool of pole expansion in the complex plane is employed to address the interaction
of the unstable growth process with random initial conditions and perturbations. We
argue that the effect of random noise is immense and that it can never be neglected
in sufficiently large systems. We present simulations that lead to scaling laws for the
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velocity and acceleration of the front as a function of the system size and the level
of noise, and analytic arguments that explain these results in terms of the noisy pole
dynamics. We give a detailed description of excess number of poles in system,
number of poles that appear in the system in unit of time, lifetime of pole. It allows
us to understand dependence of the system parameters on noise.

In Chap. 3 we consider flame front propagation in channel geometries. The
steady-state solution in this problem is space dependent, and therefore the linear
stability analysis is described by a partial integro-differential equation with a
space-dependent coefficient. Accordingly, it involves complicated eigenfunctions.
We show that the analysis can be performed to required detail using a finite order
dynamical system in terms of the dynamics of singularities in the complex plane,
yielding detailed understanding of the physics of the eigenfunctions and
eigenvalues.

In Chap. 4 flame propagation is used as a prototypical example of expanding
fronts that wrinkle without limit in radial geometries, but reach a simple shape in
channel geometry. We show that the relevant scaling laws that govern the radial
growth can be inferred once the simpler channel geometry is understood in detail.
In radial geometries (in contrast to channel geometries) the effect of external noise
is crucial in accelerating and wrinkling the fronts. Nevertheless, once the interre-
lations between system size, velocity of propagation and noise level are understood
in channel geometry, the scaling laws for radial growth follow.

In Chap. 5 Filtration Combustion is described by Laplacian growth without
surface tension. These equations have elegant analytical solutions that replace the
complex integro-differential motion equations by simple differential equations of
pole motion in a complex plane. The main problem with such a solution is the
existence of finite time singularities. To prevent such singularities, nonzero surface
tension is usually used. However, nonzero surface tension does not exist in filtration
combustion, and this destroys the analytical solutions. However, a more elegant
approach exists for solving the problem. First, we can introduce a small amount of
pole noise to the system. Second, for regularization of the problem, we throw out all
new poles that can produce a finite time singularity. It can be strictly proved that the
asymptotic solution for such a system is a single finger. Moreover, the qualitative
consideration demonstrates that a finger with 1/2 of the channel width is statistically
stable. Therefore, all properties of such a solution are exactly the same as those
of the solution with nonzero surface tension under numerical noise. The solution
of the Saffman-Taylor problem without surface tension is similar to the solution for
the equation of cellular flames in the case of the combustion of gas mixtures.

In Chap. 6 we give a short summary of the book ideas.

Moscow Oleg Kupervasser
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Chapter 1
General View of Pole Solutions in Flame
Front Propagation

Abstract We describe basic concepts and problems in flame front propagation; give
a review of many relevant papers and books in this field.

Problems of interface growth have received much attention [1–11]. Such are, for
example, the diffusion limited aggregation (DLA) [12], random sequential adsorption
(RSA) [13], Laplacian growth [6, 14–23] or premixed flame front propagation [1, 3,
4, 7, 24–29]. We will mainly pay attention in this book to the numerical and analytical
investigation of the last two problems.

We start to study the example of premixed flame propagation rather than Laplacian
growth, simply because the former has an analytic description in terms of poles also
in the experimentally relevant case of finite regularization term.

In addition to the fact that premixed flame front propagation is an interesting
physical problem we feel that we can also explain experimental results on the basis
of theoretical investigations.

The premixed flame—the self-sustaining wave of an exothermic chemical
reaction—is one of the basic manifestations of gaseous combustion. It is well estab-
lished, however, that the simplest imaginable flame configuration—unbounded pla-
nar flame freely propagating through initially motionless homogeneous combustible
mixture—is intrinsically unstable and spontaneously assumes a characteristic two-
or three-dimensional structure.

This book considers the very interesting problem of describing the nonlinear stage
of development of hydrodynamic instability of the premixed flame. This problem can
be considered for 1D (channel propagation), 2D (cylindrical propagation or rectangu-
lar channel cases), 3D (spherical case). The dimensionality of the problem is defined
by the space dimensionality of the range of definition for the function, describing
moving front. The direct numerical simulations can be made based on of the Navier-
Stokes equations for expending premixed flames [30–33] and for channel geometry
[34–36]. For 2D-cylindrical and 3D cases we can see experimentally observable
effects [37–45] of the self-acceleration of the front of a divergent premixed flame,
the formation of cellular structure, and other effects.

Much more simple equation for premixed flame can be obtained [29, 46]. It is
Michelson-Sivashinsky approximation model for the channel case (and very similar

© Springer International Publishing Switzerland 2015
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2 1 General View of Pole Solutions in Flame Front Propagation

Sivashinsky, Filyand and Frankel equation for cylindrical case). The Michelson-
Sivashinsky model assumes very serious limitations, such as the smallness of the
coefficient of gas expansion and, consequently, the potential flow in the combustion
products and fresh mixture, weak nonlinearity, the assumptions of the stabilizing
effect of the curvature of the premixed flame front and a linear dependence on the
curvature of the normal speed, and others.

Interest of this model stems, firstly, from the fact that despite the serious limita-
tions, this model can qualitatively describe the scenario of hydrodynamic instability
and, in particular, the self-acceleration of the front of a divergent premixed flame,
the formation of a cellular structure, and other effects.

Secondary, this nonlinear model has exact solutions which can be constructed on
the basis of pole expansions. This pole expansion method got development in the fol-
lowing papers [47–50]. There was investigated relationships between pole solutions
and partial decomposition in Fourier series [51], between the gas flow field and pole
solutions [52]. The future development can be found in the following papers and the
correspondent references inside of [24–27]. The Michelson-Sivashinsky model and
pole solutions can be used for investigation of burning in Ia supernovae [53].

The aim of this book is to examine the role of random fluctuations on the dynam-
ics of growing wrinkled interfaces which are governed by non-linear equations of
motion. We are interested in those examples for which the growth of a flat or smooth
interface are inherently unstable. A famous example of such growth phenomena is
provided by Laplacian growth patterns [6, 8–10, 14, 15, 18–20]. The experimental
realization of such patterns is seen for example in Hele-Shaw cells [6, 10, 16] in which
air or another low viscosity fluid is displacing oil or some other high viscosity fluid.
Under normal conditions the advancing fronts do not remain flat; in channel geome-
tries they form in time a stable finger whose width is determined by delicate effects
that arise from the existence of surface tension. In radial geometry, the growth the
interface forms a contorted and ramified fractal shape. The same model of Laplacian
growth can be used for description of Filtration Combustion, where no surface ten-
sion exists [14, 15, 18–20] (see also Appendix 2 in Chap. 5). A related phenomenon
has been studied in a model equation for premixed flame propagation [29] which has
the same linear stability properties as the Laplacian growth problem. The physical
problem in this case is that of premixed flames which exist as self-sustaining fronts
of exothermic chemical reactions in gaseous combustion. Experiments on Premixed
flame propagation in radial (cylindrical) [37] and spherical [37–45] geometry show
that the premixed flame front accelerates as time goes on, and roughens with charac-
teristic exponents. Both observations must receive proper theoretical explanations.
It is notable that the channel and radial growth are markedly different; the former
leads to a single giant cusp in the moving front, whereas the latter exhibits infinitely
many cusps that appear in a complex hierarchy as the premixed flame front develops
([28, 46] and Chap. 4).

Analytic techniques to study such processes are available [47]. In the context
of premixed flame propagation [24–28, 48–50], and in Laplacian growth in the zero
surface tension limit [14, 16, 22, 54, 55] one can examine solutions that are described
in terms of poles in the complex plane. This description is very useful in providing a

olegkup@yahoo.com



1 General View of Pole Solutions in Flame Front Propagation 3

set of ordinary differential equations for the positions of the poles, from which one
can deduce the geometry of the developing front in an extremely economical and
efficient way. Unfortunately this description is not available in the case of Laplacian
growth with surface tension, and this makes the premixed flame propagation problem
very attractive. However, it suffers from one fundamental drawback. For the noiseless
equation the pole-dynamics always conserves the number of poles that existed in the
initial conditions. As a result there is a final degree of ramification that is afforded by
every set of initial conditions even in the radial geometry, and it is not obvious how
to describe the continuing self-similar growth that is seen in experimental conditions
or numerical simulations. Furthermore, as mentioned before, at least in the case of
premixed flame propagation one observes [37–45] an acceleration of the premixed
flame front with time. Such a phenomenon is impossible when the number of poles is
conserved. It is therefore tempting to conjecture that noise may have an important role
in affecting the actual growth phenomena that are observed in such systems. In fact,
the effect of noise on unstable front dynamics must be adequately described. From
the point of view of analytic techniques noise can certainly generate new poles even
if the initial conditions had a finite number of poles. The subject of pole dynamics
with the existence of random noise, and the interaction between random fluctuations
and deterministic front propagation are the main issues of this book.

The consideration of the noise term is critically important for these processes.
Indeed, in papers [56–60], the authors try to explain self-acceleration without involve-
ment of the external forcing. However, no self-acceleration exist for the finite number
of poles. So we can explain the self-acceleration and the appearance of new poles
or by the noise or by the “rain” of poles from the “cloud” in infinity. Unfortunately,
such rain can not “achieve” the “ground” for accelerating premixed flame as we will
see in Chap. 4.

The authors of [56–60] suppose that some analytical solution without noise corre-
sponds to the unsteady solution with increasing number of cusps in radial case. They
base this conclusion on the weak dependence of numerical simulations on the noise
reduction ([56], Fig. 2). However, we will see in Chap. 2 that for the big interval of the
noise values (larger than some small value and up to some big value) in the regime III
(corresponding to the increasing number of poles in radial case), the dependence on
the noise is very slow: f 0.02. This result explains the weak dependence of numerical
simulations on the noise reduction.

The calculations with a noise term was performed in both one-dimensional and
two-dimensional formulations of the problem in the papers [24–27] and by Karlin
and Sivashinsky [61, 62] for 1D, 2D and 3D cases.

The future development of these results is gotten in papers [63–65]. In the paper
[63] the noise term was considered in the poles-like form. The numerical results for
1D case are in a good consistence with the theoretical results of this book. The accel-
eration value of premixed flames fronts changes in the interval 1.25–1.5 according
experimental [37–45] and theoretical [24, 26, 27, 30, 33, 46, 61–63, 80–84] results.
The dependence of the acceleration value on the other parameters can explain this
variation. The dependence was investigated numerically [63] and experimentally
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4 1 General View of Pole Solutions in Flame Front Propagation

[40]. In [65], hydrodynamic instability of inward-propagating premixed flames was
investigated.

Joulin et al. [66–69] use a vary similar to [24–28] approach for the channel and
radial premixed flame growth. Main attention in the channel case in Joulin’s work
was made to the investigation of mean-spacing between cusps (crests). For the radial
case only the linear dependence of radius on time (no self-acceleration) is considered
in Joulin’s work. The main attention in our work is made to the velocity of premixed
flame front (self-acceleration for the radial case) and the premixed flame front width.

In the next papers of Joulin et al. [50, 70, 71], the pole solutions for the Zhdanov-
Trubnikov equation (extensions of Michelson-Sivashinsky equation that incorporate
higher orders of the coefficient of gas expansion) are developed.

In the paper of Joulin et al. [72] the pole solutions for steady forced premixed
flames are considered.

In the paper of Joulin et al. [73], the steady pole solutions is analyzed for Neu-
mann boundary conditions (“no-flux” boundary conditions suggested in [74, 75],
which are more physical than periodical boundary conditions [48]) in the Michelson-
Sivashinsky equation. For these boundary conditions, we get two cusps on bound-
aries with unequal fluctuating sizes (instead of one moving giant cusp for periodical
boundary conditions).

Similar “no-flux” boundary conditions (instead periodical ones [22, 23]) was sug-
gested previously for Laplacian growth in [76] and developed in [14, 21]. However,
[76] repeats the conclusion about one finger asymptotic, which are made previously
in [16].

In the paper of Joulin et al. [49, 77] approximate the giant cusp steady solu-
tion of the Michelson-Sivashinsky equation by parabola (geometrical stretch) and
investigate its nonlinear stability: perturbations of this approximated solution can be
described by poles.

In the paper of Joulin et al. [78], the authors discovered that pole positions in the
giant cusp (for the number of poles N > 3) can be approximated with high precision
by roots of polynomials, ruled by a discretized Burgers equation.

In the paper of Gostintsev, Istratov and Shulenin [37] an interesting survey of
experimental studies on outward propagating spherical and cylindrical premixed
flames in the regime of well developed Darrieus-Landau hydrodynamic instability
[79] is presented. The available data clearly indicate that freely expanding wrinkled
premixed flames possess two intrinsic features:

1. Multi-quasi-cusps structure of the premixed flame front. (The premixed flame
front consists of a large number of quasi-cusps, i.e., cusps with rounded tips.)

2. Noticeable acceleration of the premixed flame front: the propagation of wrinkled
premixed flames really self accelerates and the acceleration follows a self-similar
law. In other words, we fit the velocity data with a power-law formula, the exponent
not only is greater than unity but it is also a constant, at least within a certain stage
of the propagation.

According [37], the temporal dependence of the premixed flame radius is nearly
identical for all premixtures discussed and correlates well with the simple relation:
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1 General View of Pole Solutions in Flame Front Propagation 5

R0(t) = At3/2 + B (1.1)

Here R0(t) is the effective (average) radius of the wrinkled premixed flame and
A, B are empirical constants.

In follow-on publications (both this authors and the other authors [37–45]) the
value of acceleration 1.5 was lowered to 1.25–1.5, with the revised assessment that
the value of 1.5 is only attained in limiting cases.

In this book we study the spatial and temporal behavior of a nonlinear continuum
model (i.e., a model which possesses an infinite number of degrees of freedom) which
embodies all the characteristics deemed essential to premixed flame systems; namely,
dispersiveness, nonlinearity and linear instability. Sivashinsky, Filyand and Frankel
[46] obtained an equation, denoted by SFF in what follows, to describe how two-
dimensional wrinkles of the cylindrical premixed flame grow as a consequence of
the well-known Darrieus-Landau hydrodynamic instability [79]. The formal deriva-
tion of (1.2) is quite similar to that Michelson-Sivashinsky (MS) (1.5) presented
by Sivashmsky [29], where the hydrodynamically unstable planar premixed flames
were studied. The SFF and MS equations were obtained under assumption that the
Attwood number A = (E − 1)/(E + 1) (based on the fresh-to-burnt density ratio
E > 1) is small.

The SFF equation reads as follows:

∂R

∂t
= Ub

2R0
2(t)

(
∂R

∂θ

)2

+ DM

R0
2(t)

∂2 R

∂θ2 + γUb

2R0(t)
I {R} + Ub. (1.2)

where 0 < θ < 2π is an angle, R(θ, t) is the modulus of the radius-vector on
the premixed flame interface (We can to increase the define area of the function
R(θ, t) with periodical boundary condition to −∞ < θ < +∞ by the periodical
continuation), Ub, DM , γ are constants.

I (R) = 1

π

∞∑
n=1

n
∫ 2π

0
cos[n(θ − θ∗)]R(θ∗, t)dθ∗ =

= − 1

π
P

∫ +∞

−∞

∂R(θ∗,t)
∂θ∗

θ∗ − θ
dθ∗ (1.3)

R0(t) = 1

2π

∫ 2π

0
R(θ, t)dθ. (1.4)

Sivashinsky, Filyand and Frankel [46] made a direct numerical simulation of this
nonlinear evolution equation for the cylindrical premixed flame interface dynamics.

The result obtained shows that the two mentioned experimental effects take place.
Moreover, the evaluated acceleration rate is not incompatible with the power law
given by (1.1). For comparison, numerical simulations of freely expanding diffusively
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6 1 General View of Pole Solutions in Flame Front Propagation

unstable premixed flames were presented as well. In this case no tendency towards
acceleration has been observed.

The acceleration value of premixed flames fronts changes in the interval 1.25–1.5
according the other theoretical results [24, 26, 27, 30, 33, 61–63, 80–84].

To obtain results for radial premixed flame growth it is necessary [26, 30, 85]
to investigate the channel case first. The channel version of equation for premixed
flame front propagation is the so-called Michelson-Sivashinsky equation [29, 48, 86]
(see also Appendix in Chap. 2) and looks like

∂H

∂t
= 1

2

(
∂H

∂x

)2

+ ν
∂2 H

∂x2 + I {H}. (1.5)

I (H) = − 1

π
P

∫ +∞

−∞

∂H(x∗,t)
∂x∗

x∗ − x
dx∗. (1.6)

with periodic boundary condition on the interval x [0, L], where L is size of the
system. ν is constant, ν > 0. H is the height of the premixed flame front point, P

∫
is the usual principal value integral.

There exists possibility to use methods found for the premixed flame front propa-
gation, in different fields where similar problems appear such as the important model
of Laplacian growth.

In the absence of surface tension, whose effect is to stabilize the short-wavelength
perturbations of the interface, the problem of 2D Laplacian growth is described as
follows

(∂2
x + ∂2

y)u = 0. (1.7)

u |�(t)= 0 , ∂nu |�= 1. (1.8)

vn = ∂nu |�(t). (1.9)

Here u(x, y; t) is the scalar field mentioned, �(t) is the moving interface, � is a
fixed external boundary, ∂n is a normal component of the gradient to the boundary
(i.e. the normal derivative), and vn is a normal component of the velocity of the front.

Equations for premixed flame front propagation and Laplacian growth with zero
surface tension have remarkable property : these equations can be solved in terms
of poles in the complex plane [22, 47–49, 69, 87]. So we obtain a set of ordinary
differential equations for the coordinates of these poles. The number of the poles
is constant value in the system, but to explain such effect as growth of the velocity
premixed flame front we need to consider some noise that is a source of new poles.
So we need to solve the problem of interaction of the random fluctuations and the
pole motion.

The simplest case is the channel geometry. Main results for this case is existence
of the giant cusp solution [48] (Fig. 1.1), which is represented in configuration space
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1 General View of Pole Solutions in Flame Front Propagation 7

Fig. 1.1 Giant cusp solution
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by poles which are organized on a line parallel to the imaginary axis. This pole
solution is an attractor for pole dynamics.

A complete analysis of this steady-state solution was first presented in [48] and
the main results are summarized as follows:

1. There is only one stable stationary solution which is geometrically represented by
a giant cusp (or equivalently one finger) and analytically by N (L) poles which are
aligned on one line parallel to the imaginary axis. The existence of this solution
is made clearer with the following remarks.

2. There exists an attraction between the poles along the real line. The resulting
dynamics merges all the x positions of poles whose y-position remains finite.

3. The y positions are distinct, and the poles are aligned above each other in positions
y j−1 < y j < y j+1 with the maximal being yN (L). This can be understood from
equations for the poles motion in which the interaction is seen to be repulsive at
short ranges, but changes sign at longer ranges.

4. If one adds an additional pole to such a solution, this pole (or another) will be
pushed to infinity along the imaginary axis. If the system has less than N (L) poles
it is unstable to the addition of poles, and any noise will drive the system towards
this unique state. The number N (L) is

N (L) =
[1

2

(
L

ν
+ 1

) ]
, (1.10)

where
[
. . .

]
is the integer part and 2πL is a system size. To see this consider a

system with N poles and such that all the values of y j satisfy the condition 0 <

y j < ymax . Add now one additional pole whose coordinates are za ≡ (xa, ya)

with ya � ymax . From the equation of motion for ya , we see that the terms in the
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8 1 General View of Pole Solutions in Flame Front Propagation

sum are all of the order of unity as is also the cot(ya) term. Thus the equation of
motion of ya is approximately

dya

dt
≈ ν

2N + 1

L2 − 1

L
. (1.11)

The fate of this pole depends on the number of other poles. If N is too large the
pole will run to infinity, whereas if N is small the pole will be attracted towards
the real axis. The condition for moving away to infinity is that N > N (L) where
N (L) is given by (1.10). On the other hand the y coordinate of the poles cannot hit
zero. Zero is a repulsive line, and poles are pushed away from zero with infinite
velocity. To see this consider a pole whose y j approaches zero. For any finite L
the term coth(y j ) grows unboundedly whereas all the other terms in the equation
for the poles motion remain bounded.

5. The height of the cusp is proportional to L . The distribution of positions of the
poles along the line of constant x was worked out in [48].

We will refer to the solution with all these properties as the Thual-Frisch-Henon
TFH-cusp solution.

The main results of our own work are as follow. Traditional linear analysis was
made for this giant cusp solution. This analysis demonstrates the existence of negative
eigenvalues that go to zero when the system size goes to infinity.

1. There exists an obvious Goldstone or translational mode with eigenvalue λ0 = 0.
This eigenmode stems from the Galilean invariance of the equation of motion.

2. The rescaled eigenvalues (L2λi ) oscillate periodically between values that are
L-independent in this presentation. In other words, up to the oscillatory behavior
the eigenvalues depend on L like L−2.

3. The eigenvalues λ1 and λ2 hit zero periodically. The functional dependence in
this presentation appears almost piecewise linear.

4. The higher eigenvalues also exhibit similar qualitative behavior, but without
reaching zero. We note that the solution becomes marginally stable for every
value of L for which the eigenvalues λ1 and λ2 hit zero. The L−2 dependence
of the spectrum indicates that the solution becomes more and more sensitive to
noise as L increases.

It was proved that arbitrary initial conditions can be written in the term of poles in
the complex plane. Inverse cascade process of giant cusp formation was investigated
numerically and analytically. Dependencies of the premixed flame front width and
mean velocity were found. The next step in investigation of the channel case was
the influence of random noise on the pole dynamics. The main effect of the external
noise is the appearance of new poles in the minima of the premixed flame front and
the merging these poles with the giant cusp. The dependence of the mean premixed
flame front velocity on the noise and the system size was found. The velocity is
almost independent on the noise until the noise achieves some critical value. In the
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1 General View of Pole Solutions in Flame Front Propagation 9

dependence of the velocity on the system size we see growth of the velocity with
some exponent until the velocity achieves some saturation value.

Denoting v as the velocity of the premixed flame front and L the system size:

1. We can see two different regimes of behavior the average velocity v as a function
of noise f for fixed system size L. For the noise f smaller then same fixed value
fcr

v ∼ f ξ . (1.12)

For these values of f this dependence is very weak, and ξ ≈ 0.02. For large
values of f the dependence is much stronger

2. We can see growth of the average velocity v as a function of the system size L.
After some values of L we can see saturation of the velocity. For regime f < fcr

the growth of the velocity can be written as

v ∼ Lμ, μ ≈ 0.35 ± 0.03. (1.13)

3. For f > fcr in Fig. 3.9 we will see qualitative change in the appearance of
the premixed flame front: the noise introduces significant levels of small scales
structure in addition to the cusps. The same observation was made in [88]

The dependence of the number of poles in the system and the number of the poles
that appear in the system in unit time was investigated numerically as a function of
the noise and the system parameters. The life time of a pole was found numerically.
Theoretical discussion of the effect of noise on the pole dynamics and mean velocity
was made [24, 27].

Pole dynamics can be used also to analyze small perturbation of the premixed
flame front and make the full stability analysis of the giant cusp. Two kinds of modes
were found. The first one is eigenoscillations of the poles in the giant cusp. The
second one is modes connected to the appearance of the new poles in the system.
The eigenvalues of these modes were found in [25, 89, 90]. The results of these
papers are in good agreement with the traditional stability analysis ([89, 90] repeat
many conclusions made previously in [25]).

The results found for the channel case can be used to analyze premixed flame front
propagation in the radial case [26, 28]. Main feature of this case is a competition
between attraction of the poles and expanding of the premixed flame front. So in
this case we obtain not only one giant cusp but a set of cusps. New poles that appear
in the system because of the noise form these cusps. On the basis of the equation
of poles motion we can find connection between acceleration of the premixed flame
front and the width of the interface. On the basis of the result for mean velocity in
the channel case the acceleration of the premixed flame front can be found. So we
obtain full picture of the premixed flame front propagation in the radial case.

The next step in the investigation of the problem is considering Laplacian growth
with zero surface tension that also has pole solutions. In the case of Laplacian growth
we obtain result that is analogous to the merging of the poles in the channel case of
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10 1 General View of Pole Solutions in Flame Front Propagation

the premixed flame front propagation: all poles coalesce into one pole in the case of
periodic boundary condition or two poles on the boundaries in the case of no-flux
boundary conditions. This result can be proved theoretically [14, 16]. Moreover, it is
possible to demonstrate that this solution is statistically stable: the width of the final
finger will be oscillate near 1/2 of the channel width in the presence of a noise [14].

The structure of this book is as follow.
In Chap. 2 we obtain main results for the channel case of the premixed flame front

propagation. We give results about steady state solutions, present traditional linear
analysis of the problem and investigate analytically and numerically the influence of
noise on the mean velocity of the front and pole dynamics.

In Chap. 3 we obtain results of the linear stability analysis by the help of pole
solutions.

In Chap. 4 we use the result obtained for the channel case for analysis of the
premixed flame front propagation in the radial case

In Chap. 5 we investigate asymptotic behavior of the poles in the complex plane
for the Laplacian growth with the zero surface tension in the case of periodic and
no-flux boundary condition.

In Chap. 6 we give a short summary of the book ideas.
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Chapter 2
Pole-Dynamics in Unstable Front
Propagation: The Case of The Channel
Geometry

Abstract We investigate the problem of flame propagation. This problem is studied
as an example of unstable fronts that wrinkle on many scales. The analytic tool of pole
expansion in the complex plane is employed to address the interaction of the unstable
growth process with random initial conditions and perturbations. We argue that the
effect of random noise is immense and that it can never be neglected in sufficiently
large systems. We present simulations that lead to scaling laws for the velocity and
acceleration of the front as a function of the system size and the level of noise, and
analytic arguments that explain these results in terms of the noisy pole dynamics.
We makes detailed description of excess number of poles in system, number of poles
that appear in the system in unit of time, life time of pole. It allows us to understand
dependence of the system parameters on noise.

2.1 Introduction

It must be mentioned that the simplest 1D case of the premixed flame premixed
flame front propagation front propagation is very important. It was the main reason
for creation this chapter considering in detail the 1D case. Such investigation of this
case allows us to understand qualitatively and quantitatively the pole dynamics. This
understanding is a basis for the consideration more complex 2D and 3D cases. The
papers [26, 30, 85] clearly demonstrate this fact. The cellular structure, acceleration
exponent for 2D case was found on the basis of 1D results.

We choose to begin the study with channel geometry. The reason is that in radial
geometry it is more difficult to disentangle the effects of external noise from those of
initial conditions. After all, initially the system can contain infinitely many poles,very
far away near infinity in the complex plane (and therefore having an infinitely small
contribution to the interface). Since the growth of the radius changes the stability
of the system, more and more of these poles might fall down to the real axis and
become observable. In channel geometry the analysis of the effect of initial condi-
tions is relatively straightforward, and one can understand it before focusing on the
(more interesting) effects of external noise [48]. The basic reason for this is that in

© Springer International Publishing Switzerland 2015
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Chapter 6
Summary

Abstract We give a short summary of the book ideas.

The problem of premixed flame propagation is studied as an example of unstable
fronts that wrinkle on many scales. The analytic tool of pole expansion in the complex
plane is employed to address the interaction of the unstable growth process with
random initial conditions and perturbations. We argue that the effect of random
noise is immense and that it can never be neglected in sufficiently large systems. We
present simulations that lead to scaling laws for the velocity and acceleration of the
front as a function of the system size and the level of noise, and analytic arguments
that explain these results in terms of the noisy pole dynamics.

We consider premixed flame front propagation in channel geometries. The steady
state solution in this problem is space dependent, and therefore the linear stability
analysis is described by a partial integro-differential equation with a space dependent
coefficient. Accordingly it involves complicated eigenfunctions. We show that the
analysis can be performed to required detail using a finite order dynamical system
in terms of the dynamics of singularities in the complex plane, yielding detailed
understanding of the physics of the eigenfunctions and eigenvalues.

The roughening of expanding premixed flame fronts by the accretion of cusp-
like singularities is a fascinating example of the interplay between instability, noise
and nonlinear dynamics that is reminiscent of self-fractalization in Laplacian growth
patterns. The nonlinear integro-differential equation that describes the dynamics of
expanding premixed flame fronts is amenable to analytic investigations using pole
decomposition. This powerful technique allows the development of a satisfactory
understanding of the qualitative and some quantitative aspects of the complex geom-
etry that develops in expanding premixed flame fronts.

Premixed flame propagation is used as a prototypical example of expanding fronts
that wrinkle without limit in radial geometries but reach a simple shape in channel
geometry. We show that the relevant scaling laws that govern the radial growth can be
inferred once the simpler channel geometry is understood in detail. In radial geome-
tries (in contrast to channel geometries) the effect of external noise is crucial in
accelerating and wrinkling the fronts. Nevertheless, once the interrelations between
system size, velocity of propagation and noise level are understood in channel geom-
etry, the scaling laws for radial growth follow.

© Springer International Publishing Switzerland 2015
O. Kupervasser, Pole Solutions for Flame Front Propagation,
Mathematical and Analytical Techniques with Applications to Engineering,
DOI 10.1007/978-3-319-18845-4_6

109

olegkup@yahoo.com



110 6 Summary

The mathematical problem of Laplacian growth without surface tension exhibits
a family of exact (analytic) solutions in terms of logarithmic poles in the complex
plane. We show that this family of solutions has a remarkable property: generic initial
conditions in channel geometry which begin with arbitrarily many features exhibit
an inverse cascade into a single finger. Moreover, it is possible to demonstrate that
this solution is statistically stable: the width of the final finger will be oscillate near
1/2 of the channel width in the presence of a noise.
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