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Abstract

The current paper is a corrected version of our previous paper (Olami et al., PRE
55 (3),(1997)). Similarly to previous version we investigatethe problem of flame
propagation. This problem is studied as an example of unstable fronts that wrinkle
on many scales. The analytic tool of pole expansion in the complex plane is em-
ployed to address the interaction of the unstable growth process with random initial
conditions and perturbations. We argue that the effect of random noise is immense
and that it can never be neglected in sufficiently large systems. We present simu-
lations that lead to scaling laws for the velocity and acceleration of the front as a
function of the system size and the level of noise, and analytic arguments that ex-
plain these results in terms of the noisy pole dynamics.Thisversion corrects some
very critical errors made in (Olami et al., PRE55 (3),(1997)) and makes more
detailed description of excess number of poles in system , number of poles that
appear in the system in unit of time, life time of pole. It allows us to understand
more correctly dependence of the system parameters on noisethan in (Olami et al.,
PRE55 (3),(1997))
Keywords: flame propagation, pole dynamics, unstable front, random noise, self-
acceleration

1 Introduction

This article considers the very interesting problem of describing the nonlinear stage of
development of hydrodynamic instability of the flame. This problem can be considered
for 1D (channel propagation) , 2D (cylindrical case) , 3D (spherical case). The direct
numerical simulations can be made based on of the NavierStokes equations including
chemical kinetics in the form of the Arrhenius law [1]. For 2Dand 3D cases we can
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see experimentally observable effects [2], [3] of the self-acceleration of the front of a
divergent flame, the formation of cellular structure, and other effects.

Much more simple equation for flame front propagation can be obtained [4], [5] .
It is Michelson-Sivashinsky approximation model. The Michelson-Sivashinsky model
assumes very serious limitations, such as the smallness of the coefficient of gas ex-
pansion and, consequently, the potential flow in the combustion products and fresh
mixture, weak nonlinearity, the assumptions of the stabilizing effect of the curvature
of the flame front and a linear dependence on the curvature of the normal speed, and
others. The calculations with a noise term was performed in both one-dimensional and
two-dimensional formulations of the problem in our previous papers [6], [7], [8], [9],
[10], [11] and recently by Karlin and Sivashinsky [12] , [13]for 1D, 2D and 3D cases.

Interest of this model stems, firstly, from the fact that despite the serious limita-
tions, this model can qualitatively describe the scenario of hydrodynamic instability
and, in particular, the self-acceleration of the front of a divergent flame, the formation
of a cellular structure, and other effects. Secondary, thisnonlinear model has exact
solutions which can be constructed on the basis of pole expansions [14], [15], [16],
[17]. This pole expansion method got development in the following papers. There was
investigated relationships between pole solutions and partial decomposition in Fourier
series [18], between the gas flow field and pole solutions [19]. The future development
can be found in our previous papers and the correspondent references inside of [6], [7],
[8], [9], [10], [11].

It must be mentioned that the simplest 1D case of the flame front propagation is
very important. It was the main reason for creation this papers considering in detail
the 1D case. Such investigation of this case allows us to understand qualitatively and
quantitatively the pole dynamics. This understanding is a basis for the consideration
more complex 2D and 3D cases. The our paper [8] clearly demonstrate this fact. The
cellular structure, acceleration exponent for 2D case was found on the basis of 1D
results.

The future development of our results is gotten in papers [20], [21], [22]. In the
very interesting paper [20] the noise term was considered inthe poles-like form. The
numerical results for 1D case are in a good consistence with the theoretical results of
this paper.

This paper is update version of our previous version [6]. In this version we correct
some error. For example, we choose incorrect spectrum widthof white noise with con-
stant amplitude during changing size of channelL. As result we didn’t obtain in [6]
saturation of the frame front velocity during increasingL in contradiction with this pa-
per. The second important error connected to number of regimes defined on the “phase
diagram” of the system as a function ofL andf . Indeed not three but four such regimes
exist. The noise influence theory developed in [6] describedtransition from regime I
to regime II and describe only these two regimes. The regime II can not be observed
because of numerical noise. The observable regime III can not be explained by the help
theory developed in [6]. To make such explanation we calculate numerically and try
explain analytically such values as excess number of poles in system , number of poles
that appear in the system in unit of time, life time of pole [11]. The developed theory
can explain the existence of small dependence parameters ofproblem on the noise in
regime III.
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The rest of the paper is organized as follows. We begin by presenting equations
of motion and pole-decomposition in the channel geometry(Section 2).Next Section 3
describes acceleration of the flame front, pole dynamics andnoise. And finally (Sec-
tion 4) we give summary and conclusions.

2 Equations of Motion and Pole-decomposition in the
Channel Geometry

It is known that planar flames freely propagating through initially motionless homoge-
neous combustible mixtures are intrinsically unstable. Itwas reported that such flames
develop characteristic structures which include cusps, and that under usual experimen-
tal conditions the flame front accelerates as time goes on. A model in1+1 dimensions
that pertains to the propagation of flame fronts in channels of width L̃ was proposed in
[4]. It is written in terms of positionh(x, t) of the flame front above thex-axis. After
appropriate rescalings it takes the form:

∂h(x, t)

∂t
=

1

2

[

∂h(x, t)

∂x

]2

+ ν
∂2h(x, t)

∂x2
+ I{h(x, t)}+ 1 . (1)

The domain is0 < x < L̃, ν is a parameter and we use periodic boundary conditions.
The functionalI[h(x, t)] is the Hilbert transform of derivative which is conveniently
defined in terms of the spatial Fourier transform

h(x, t) =

∫ ∞

−∞

eikxĥ(k, t)dk (2)

I[h(k, t)] = |k|ĥ(k, t) (3)

For the purpose of introducing the pole-decomposition it isconvenient to rescale the
domain to0 < θ < 2π. Performing this rescaling and denoting the resulting quantities
with the same notation we have

∂h(θ, t)

∂t
=

1

2L2

[

∂h(θ, t)

∂θ

]2

+
ν

L2

∂2h(θ, t)

∂θ2

+
1

L
I{h(θ, t)}+ 1 . (4)

In this equationL = L̃/2π. Next we change variables tou(θ, t) ≡ ∂h(θ, t)/∂θ. We
find

∂u(θ, t)

∂t
=

u(θ, t)

L2

∂u(θ, t)

∂θ
+

ν

L2

∂2u(θ, t)

∂θ2
+

1

L
I{u(θ, t)} . (5)

It is well known that the flat front solution of this equation is linearly unstable. The
linear spectrum ink-representation is

ωk = |k|/L− νk2/L2 . (6)
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There exists a typical scalekmax which is the last unstable mode

kmax =
L

ν
. (7)

Nonlinear effects stabilize a new steady-state which is discussed next.
The outstanding feature of the solutions of this equation isthe appearance of cusp-

like structures in the developing fronts. Therefore a representation in terms of Fourier
modes is very inefficient. Rather, it appears very worthwhile to represent such solu-
tions in terms of sums of functions of poles in the complex plane. It will be shown
below that the position of the cusp along the front is determined by the real coordinate
of the pole, whereas the height of the cusp is in correspondence with the imaginary
coordinate. Moreover, it will be seen that the dynamics of the developing front can
be usefully described in terms of the dynamics of the poles. Following [7, 14, 15, 17]
we expand the solutionsu(θ, t) in functions that depend onN poles whose position
zj(t) ≡ xj(t) + iyj(t) in the complex plane is time dependent:

u(θ, t) = ν

N
∑

j=1

cot

[

θ − zj(t)

2

]

+ c.c.

= ν

N
∑

j=1

2 sin[θ − xj(t)]

cosh[yj(t)]− cos[θ − xj(t)]
, (8)

h(θ, t) = 2ν
N
∑

j=1

ln
[

cosh(yj(t))− cos(θ − xj(t))
]

+ C(t) . (9)

In (9) C(t) is a function of time. The function (9) is a superposition of quasi-cusps
(i.e. cusps that are rounded at the tip). The real part of the pole position (i.e. xj)
is the coordinate (in the domain[0, 2π]) of the maximum of the quasi-cusp, and the
imaginary part of the pole position (i.eyj) is related to the depth of the quasi-cusp. As
yj decreases the depth of the cusp increases. Asyj → 0 the depth diverges to infinity.
Conversely, whenyj → ∞ the depth decreases to zero.

The main advantage of this representation is that the propagation and wrinkling of
the front can be described via the dynamics of the poles. Substituting (8) in (5) we
derive the following ordinary differential equations for the positions of the poles:

− L2 dzj
dt

=
[

ν

2N
∑

k=1,k 6=j

cot

(

zj − zk
2

)

+ i
L

2
sign[Im(zj)]

]

. (10)

We note that in (8), due to the complex conjugation, we have2N poles which are
arranged in pairs such that forj < N zj+N = z̄j . In the second sum in (8) each pair
of poles contributed one term. In Eq.(10) we again employ2N poles since all of them
interact. We can write the pole dynamics in terms of the real and imaginary partsxj

andyj . Because of the arrangement in pairs it is sufficient to writethe equation for
eitheryj > 0 or for yj < 0. We opt for the first. The equations for the positions of the
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poles read

−L2dxj

dt
= ν

N
∑

k=1,k 6=j

sin(xj − xk)

[

[cosh(yj − yk) (11)

− cos(xj − xk)]
−1 + [cosh(yj + yk)− cos(xj − xk)]

−1

]

L2 dyj
dt

= ν

N
∑

k=1,k 6=j

( sinh(yj − yk)

cosh(yj − yk)− cos(xj − xk)

+
sinh(yj + yk)

cosh(yj + yk)− cos(xj − xk)

)

+ ν coth(yj)− L. (12)

We note that if the initial conditions of the differential equation (5) are expandable in
a finite number of poles, these equations of motion preserve this number as a function
of time. On the other hand, this may be an unstable situation for the partial differential
equation, and noise can change the number of poles. This issue will be examined at
length in Section 3. We turn now to a discussion of the steady state solution of the
equations of the pole-dynamics.

2.1 Qualitative properties of the stationary solution

The steady-state solution of the flame front propagating in channels of width2π was
presented in Ref.[15]. Using these results we can immediately translate the discussion
to a channel of widthL. The main results are summarized as follows:

1. There is only one stable stationary solution which is geometrically represented
by a giant cusp (or equivalently one finger) and analyticallybyN(L) poles which
are aligned on one line parallel to the imaginary axis. The existence of this
solution is made clearer with the following remarks.

2. There exists an attraction between the poles along the real line. This is obvious
from Eq.(11) in which the sign ofdxj/dt is always determined bysin(xj − xk).
The resulting dynamics merges all thex positions of poles whosey-position
remains finite.

3. They positions are distinct, and the poles are aligned above eachothers in posi-
tionsyj−1 < yj < yj+1 with the maximal beingyN(L). This can be understood
from Eq.(12) in which the interaction is seen to be repulsiveat short ranges, but
changes sign at longer ranges.

4. If one adds an additional pole to such a solution, this pole(or another) will be
pushed to infinity along the imaginary axis. If the system hasless thanN(L)
poles it is unstable to the addition of poles, and any noise will drive the system
towards this unique state. The numberN(L) is

N(L) =
[1

2

(

L

ν
+ 1

)

]

, (13)
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where
[

. . .
]

is the integer part. To see this consider a system withN poles and

such that all the values ofyj satisfy the condition0 < yj < ymax. Add now one
additional pole whose coordinates areza ≡ (xa, ya) with ya ≫ ymax. From the
equation of motion forya, (12) we see that the terms in the sum are all of the
order of unity as is also thecot(ya) term. Thus the equation of motion ofya is
approximately

dya
dt

≈ ν
2N + 1

L2
− 1

L
. (14)

The fate of this pole depends on the number of other poles. IfN is too large the
pole will run to infinity, whereas ifN is small the pole will be attracted towards
the real axis. The condition for moving away to infinity is that N > N(L) where
N(L) is given by (13). On the other hand they coordinate of the poles cannot hit
zero. Zero is a repulsive line, and poles are pushed away fromzero with infinite
velocity. To see this consider a pole whoseyj approaches zero. For any finite
L the termcoth(yj) grows unboundedly whereas all the other terms in Eq.(12)
remain bounded.

5. The height of the cusp is proportional toL. The distribution of positions of the
poles along the line of constantx was worked out in [15].

We will refer to the solution with all these properties as theThual-Frisch-Henon (TFH)-
cusp solution.

2.2 Nonlinear Stability

The intuition gained so far can be used to discuss the issue ofstability of a stable system
to larger perturbations. In other words, we may want to add to the system poles at finite
values ofy and ask about their fate. We first show in this subsection thatpoles whose
initial y value is belowymax ∼ log(L2/ν2) will be attracted towards the real axis. The
scenario is similar to the one described in the last paragraph.

Suppose that we generate a stable system with a giant cusp atθc = 0 with poles
distributed along they axis up toymax. We know that the sum of all the forces that
act on the upper pole is zero. Consider then an additional pole inserted in the position
(π, ymax). It is obvious from Eq.(12) that the forces acting on this pole will pull it
downward. On the other hand if its initial position is much aboveymax the force on it
will be repulsive towards infinity. We see that this simple argument identifiesymax as
the typical scale for nonlinear instability.

Next we estimateymax and interpret our result in terms of theamplitude of a per-
turbation of the flame front. We explained that uppermost pole’s position fluctuates
between a minimal value and infinity asL is changing. We want to estimate the char-
acteristic scale of the minimal value ofymax(L). To this aim we employ the result of
ref.[15] regarding the stable distribution of pole positions in a stable large system. The
parametrization of [15] differs from ours; to go from our parametrization in Eq.(5) to
theirs we need to rescaleu by L−1 andt by L. The parameterν in their parameteri-
zation isν/L in ours. According to [15] the number of poles betweeny andy + dy is
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given by theρ(y)dy where the densityρ(y) is

ρ(y) =
L

π2ν
ln[coth(|y|/4)] . (15)

To estimate the minimal value ofymax we require that the tail of the distributionρ(y)
integrated between this value and infinity will allow one single pole. In other words,

∫ ∞

ymax

dyρ(y) ≈ 1 . (16)

Expanding (15) for largey and integrating explicitly the result in (16) we end up with
the estimate

ymax ≈ 2 ln
[ 4L

π2ν

]

(17)

For largeL this result isymax ≈ ln(L
2

ν2 ). If we now add an additional pole in the
position(θ, ymax) this is equivalent to perturbing the solutionu(θ, t) with a function
νe−ymax sin(θ), as can be seen directly from (8). We thus conclude that the system is
unstable to a perturbationlarger than

u(θ) ∼ ν3 sin(θ)/L2 . (18)

This indicates a very strong size dependence of the sensitivity of the giant cusp solution
to external perturbations. This will be an important ingredient in our discussion of
noisy systems.

3 Acceleration of the Flame Front, Pole Dynamics and
Noise

A major motivation of this Section is the observation that inradial geometry the same
equation of motion shows an acceleration of the flame front. The aim of this section is
to argue that this phenomenon is caused by the noisy generation of new poles. More-
over, it is our contention that a great deal can be learned about the acceleration in radial
geometry by considering the effect of noise in channel growth. In Ref. [15] it was
shown that any initial condition which is represented in poles goes to a unique station-
ary state which is the giant cusp which propagates with a constant velocityv = 1/2
up to small1/L corrections. In light of our discussion of the last section we expect
that any smooth enough initial condition will go to the same stationary state. Thus if
there is no noise in the dynamics of a finite channel, no acceleration of the flame front
is possible. What happens if we add noise to the system?

For concreteness we introduce an additive white-noise termη(θ, t)to the equation
of motion (5) where

η(θ, t) =
∑

k

ηk(t) exp (ikθ) , (19)

and the Fourier amplitudesηk are correlated according to

< ηk(t)η
∗
k′ (t′) >=

f

L
δk,k′δ(t− t′) . (20)
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We will first examine the result of numerical simulations of noise-driven dynamics, and
later return to the theoretical analysis.

3.1 Noisy Simulations

Previous numerical investigations [5, 23] did not introduce noise in a controlled fash-
ion. We will argue later that some of the phenomena encountered in these simulations
can be ascribed to the (uncontrolled) numerical noise. We performed numerical simu-
lations of Eq.(5 using a pseudo-spectral method. The time-stepping scheme was chosen
as Adams-Bashforth with 2nd order presicion in time. The additive white noise was
generated in Fourier-space by choosingηk for everyk from a flat distribution in the

interval[−
√

2 f
L ,

√

2 f
L ]. We examined the average steady state velocity of the front as

a function ofL for fixedf and as a function off for fixedL. We found the interesting
phenomena that are summarized here:

1. In Fig.1 we can see two different regimes of behavior the average velocityv as
function of noisef0.5 for fixed system size L. For the noisef smaller then same
fixed valuefcr

v ∼ f ξ . (21)

For these values off this dependence is very weak, andξ ≈ 0.02. For large
values off the dependence is much stronger

2. In Fig.2 we can see growth of the average velocityv as function of the system
size L. After some values of L we can see saturation of the velocity. For regime
f < fcr the growth of the velocity can be written as

v ∼ Lµ, µ ≈ 0.40± 0.05 . (22)

3.2 Calculation of Poles Number in the System

The interesting problem that we would like to solve here it isto find number of poles
that exist in our system outside the giant cusp. We can make itby next way: to calculate
number of cusps (points of minimum or inflexional points) andtheir position on the
intervalθ : [0, 2π] in every moment of time and to draw positions of cusp like function
of time, see Fig.3.

We assume that our system is almost all time in ”quasi-stable” state, i.e. every new
cusp that appears in the system includes only one pole. By help pictures obtained by
such way we can find

1. By calculation number of cusp in some moment of time and by investigation of
history of every cusp (except the giant cusp) , i.e. how many initial cusps take
part in formation this cusp, after averaging with respect todifferent moments of
time we can find mean number of poles that exist in our system outside the giant
cusp. Let us denote this numberδN . We can see four regimes that can be define
with respect to dependence of this number on noisef :

8



(i) Regime I: Such small noise that no poles exist in our system outside the giant
cusp.

(ii) Regime II Strong dependence of poles numberδN on noisef .

(iii) Regime III Saturation poles numberδN on noisef , so we see very small
dependence of this number on noise

δN ∼ f0.03 (23)

Saturated value ofδN is defined by next formula

δN ≈ N(L)/2 ≈ 1

4

L

ν
(24)

whereN(L) ≈ 1
2
L
ν is number of poles in giant cusp.

(iv) Regime IV We again see strong dependence of poles numberδN on noise
f .

δN ∼ f0.1 (25)

Because of numerical noise we can see in most of simulations only regime III
and IV. In future if we don’t note something different we discuss regime III.

2. By calculation of new cusp number we can find number of polesthat appear in
the system in unit of timedNdt . In regime III

dN

dt
∼ f0.03 (26)

Dependence onL andν define by

dN

dt
∼ L0.8 (27)

dN

dt
∼ 1

ν2
(28)

And in regime IV

dN

dt
∼ f0.1 (29)
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3.3 Theoretical Discussion of the Effect of Noise

3.3.1 The Threshold of Instability to Added Noise. Transition from regime I to
regime II

First we present the theoretical arguments that explain thesensitivity of the giant cusp
solution to the effect of added noise. This sensitivity increases dramatically with in-
creasing the system sizeL. To see this we use again the relationship between the linear
stability analysis and the pole dynamics.

Our additive noise introduces perturbations with allk-vectors. We showed previ-
ously that the most unstable mode is thek = 1 componentA1 sin(θ). Thus the most
effective noisy perturbation isη1 sin(θ) which can potentially lead to a growth of the
most unstable mode. Whether or not this mode will grow depends on the amplitude of
the noise. To see this clearly we return to the pole description. For small values of the
amplitudeA1 we representA1 sin(θ) as a single pole solution of the functional form
νe−y sin θ. They position is determined fromy = − log |A1|/ν, and theθ-position is
θ = π for positiveA1 andθ = 0 for negativeA1. For very smallA1 the fate of the pole
is to be pushed to infinity, independently of itsθ position; the dynamics is symmetric in
A1 → −A1 wheny is large enough. On the other hand when the value ofA1 increases
the symmetry is broken and theθ position and the sign ofA1 become very important.
If A1 > 0 there is a threshold value ofy below which the pole is attracted down. On
the other hand ifA1 < 0, andθ = 0 the repulsion from the poles of the giant cusp
grows with decreasingy. We thus understand that qualitatively speaking the dynamics
of A1 is characterized by an asymmetric “potential” according to

Ȧ1 = −∂V (A1)

∂A1
, (30)

V (A1) = λA2
1 − aA3

1 + . . . . (31)

From the linear stability analysis we know thatλ ≈ ν/L2, cf. Eq.(14). We know
further that the threshold for nonlinear instability is atA1 ≈ ν3/L2, cf. Eq(18). This
determines that value of the coefficienta ≈ 2/3ν2. The magnitude of the “potential”
at the maximum is

V (Amax) ≈ ν7/L6 . (32)

The effect of the noise on the development of the modeA1 sin θ can be understood
from the following stochastic equation

Ȧ1 = −∂V (A1)

∂A1
+ η1(t) . (33)

It is well known [24] that for such dynamics the rate of escapeR over the “potential”
barrier for small noise is proportional to

R ∼ ν

L2
exp−ν7/ f

L
L6

. (34)

The conclusion is that any arbitrarily tiny noise becomes effective when the system
size increase and whenν decreases. If we drive the system with noise of amplitudef

L
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the system can always be sensitive to this noise when its sizeexceeds a critical value
Lc that is determined byfLc

∼ ν7/L6
c. This formula defines transition from regime

I (no poles) to regime II. ForL > Lc the noise will introduce new poles into the
system. Even numerical noise in simulations involving large size systems may have a
macroscopic influence.

The appearance of new poles must increase the velocity of thefront. The velocity
is proportional to the mean of(u/L)2. New poles distort the giant cusp by additional
smaller cusps on the wings of the giant cusp, increasingu2. Upon increasing the noise
amplitude more and more smaller cusps appear in the front, and inevitably the velocity
increases. This phenomenon is discussed quantitatively inSection 3.

3.3.2 Verifying of asymmetric ”potential” form

From the equations of the motion for poles we can find the distribution of poles in
the giant cusp [15]. If we know the distribution of poles in the giant cusp we can
then find the form of the ”potential” and verify numerically expressions for valuesλ,
Amax and ∂V (A1)

∂A1
discussed previously. The connection between amplitudeA1 and

the position of the poley is defined byA1 = 4νe−y and the connection between
the potential function∂V (A1)

∂A1
and the position of the poley is defined by formula

∂V (A1)
∂A1

= 4ν dy
dt e

−y, where dy
dt can be determined from the equation of the motion

of the poles. We can findAmax as the zero-point of∂V (A1)
∂A1

andλ can be found as
1
2
∂2V (A1)

∂A2
1

for A1 = 0. Numerical measurements were made for the set of values
L = 2nν, wheren is a integer andn > 2. For our numerical measurements we use
the constantν = 0.005 and the variableL, whereL changes in the interval [1,150], or
variableν that changes in the interval [0.005,0.05] and the constantL = 1. The results
obtained follow:

1. Formula forAmaxL
2

ν3

AmaxL
2

ν3
≈ 6.5 . (35)

2. Formula forAmax

AN(L)

Amax

AN(L)
≈ 0.465 . (36)

whereAN(L) is defined by position of the upper pole.

3. Formula forλL
2

ν

λL2

ν
= 0.5 . (37)

4. We also verify the boundary between regime I (no new cusps)and regime II
(new cusps appear). Fig. 4 shows the dependence off

Lc
onLc. We can see that

f/Lc ∼ 1/L6
c.

These results are in good agreement with the theory.
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3.3.3 The Noisy Steady State and its Collapse with Large Noise and System Size

In this subsection we discuss the response of the giant cusp solution to noise levels that
are able to introduce a large number of excess poles in addition to those existing in the
giant cusp. We will denote the excess number of poles byδN . The first question that
we address is how difficult is it to insert yet an additional pole when there is already
a given excessδN . To this aim we estimate the effective potentialVδN (A1) which is
similar to (31) but is taking into account the existence of anexcess number of poles.
A basic approximation that we employ is that the fundamentalform of the giant cusp
solution is not seriously modified by the existence of an excess number of poles. Of
course this approximation breaks down quantitatively already with one excess pole.
Qualitatively however it holds well until the excess numberof poles is of the order of
the original numberN(L) of the giant cusp solution. Another approximation is that the
rest of the linear modes play no role in this case. At this point we limit the discussion
therefore to the situationδN ≪ N(L) (regime II).

To estimate the parameterλ in the effective potential we consider the dynamics of
one pole whosey positionya is far aboveymax. According to Eq.(14) the dynamics
reads

dya
dt

≈ 2ν(N(L) + δN)

L2
− 1

L
(38)

Since theN(L) term cancels against theL−1 term (cf. Sec. 2.1), we remain with a
repulsive term that in the effective potential translates to

λ =
νδN

L2
. (39)

Next we estimate the value of the potential at the break-evenpoint between attraction
and repulsion. In the last subsection we saw that a foreign pole has to be inserted below
ymax in order to be attracted towards the real axis. Now we need to push the new pole
below the position of the existing pole whose index isN(L) − δN . This position is
estimated as in Sec 2.2 by employing the TFH distribution function (15). We find

yδN ≈ 2 ln
[ 4L

π2νδN

]

. (40)

As before, this implies a threshold value of the amplitude ofsingle pole solution
Amax sin θ which is obtained from equatingAmax = νe−yδN . We thus find in the
present caseAmax ∼ ν3(δN)2/L2. Using again a cubic representation for the effec-
tive potential we finda = 2/(3ν2δN) and

V (Amax) =
1

3

ν7(δN)5

L6
. (41)

Repeating the calculation of the escape rate over the potential barrier we find in the
present case

R ∼ νδN

L2
exp−ν7(δN)5/ f

L
L6

. (42)

For a given noise amplitudefL there is always a value ofL andν for which the
escape rate is ofO(1) as long asδN is not too large. WhenδN increases the escape
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rate decreases, and eventually no additional poles can creep into the system. The typical
numberδN for fixed values of the parameters is estimated from equatingthe argument
in the exponent to unity:

δN ≈
(

f

L
L6/ν7

)1/5

. (43)

We can see thatδN depend on noisef very seriously. It is not the case in regime
III. Let us find conditions of transition from regime II to regime III, where we see
saturation ofδN with respect to noisef .

(i) We use for the amplitude of pole solution that really equal to 2ν sin θ
cosh(yδN )−cos θ

expressionAmax = 4νe−yδN but it is right only for big numberyδN . For yδN <
1 better approximation isAmax = 4ν

y2
δN

. From equation (40) we can find that the

boundary valueyδN = 1 correspond toδN ≈ N(L)/2

(ii) We use expressionyδN ≈ 2 ln
[

4L
π2νδN

]

but for big value ofδN better approxi-

mation that can be find the same way isyδN ≈ π2ν
2L (N(L)− δN) ln

[

8eL
π2ν(N(L)−δN)

]

.

These expressions give us nearly equal result forδN ≈ N(L)/2.
From (i) and (ii) we can make next conclusions
(a) Transition from regime II to regime III happens for nearly δN ≈ N(L)/2
(b) Using new expression in (i) and (ii) for amplitudeAmax andyδN we can find

for noise f
L in regime III:

f

L
∼ V (Amax) ∼ λA2

max ∼ νδN

L2
(
4ν

y2δN
)2 ∼ L2

ν

δN

(N(L)− δN)4
(44)

This expression define very slow dependence ofδN on noisef
L for δN > N(L)/2

that explain noise saturation ofδN for regime III.
(c) Form of the giant cusp solution is defined by poles that areclosely to zero with

respect toy. For regime IIIN(L)/2 poles that have positiony < yδN=N(L)/2 = 1 stay
on these place. This result explain why giant cusp solution is not seriously modified
for regime III.

From Eq.(43) by help of boundary condition

δN ≈ N(L)/2 (45)

boundary noisefb between regime II and III can be found

fb ∼ ν2 (46)

The basic equation describing pole dynamics is next

dN

dt
=

δN

T
(47)

wheredN
dt is number of poles that appear in unit of time in our system,δN is excess

number of poles, T is mean life time of pole (between appearing and merging with giant
cusp). Using result of numerical simulations fordN

dt and (45) we can find forT
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T =
δN
dN
dt

∼ νL0.2 (48)

So life time proportional toν and depend on system sizeL very weakly.
Moreover, the lifetime of a pole is defined by the lifetime of the poles that are in

a cusp. From the maximum point of the linear part of Eq.(1 ), wecan find the mean
character size

λm ∼ ν (49)

that defines the size of our cusps. This result was confirmed innumerical calcula-
tions executed in [25]. Indeed, we can see it from Fig.9 in [25]. The mean number of
poles in a cusp

nbig ≈ λm

2ν
∼ const (50)

does not depend onL andν. The mean number of cusps is

Nbig ∼ δN

nbig
∼ L

ν
. (51)

Let us assume that some cusp exists in the main minimum of the system. The
lifetime of a pole in such a cusp is defined by three parts.

(I) Time of the cusp formation. This time is proportional to the cusp size (with
ln-corrections) and the pole number in the cusp (from pole motion equations)

T1 ∼ λmnbig ∼ ν (52)

(II) Time that the cusp is in the minimum neighborhood. This time is defined by

T2 ∼ a

v
(53)

wherea is a neighborhood of minimum, such that the force from the giant cusp is
smaller than the force from the fluctuations of the excess pole numberδN , andv is the
velocity of a pole in this neighborhood. Fluctuations of excess pole numberδN are
expressed as

Nfl =
√
δN . (54)

From this result and the pole motion equations we find that

v ∼ ν

L
Nfl ∼

ν

L

√

L

ν
∼

√

ν

L
. (55)

The velocity from the giant cusp is defined by

v ∼ ν

L
N(L)

a

L
∼ a

L
. (56)

So from equating these two equations we obtain
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a ∼
√
νL . (57)

Thus forT2 we obtain

T2 ∼ a

v
∼ L . (58)

(III) Time of attraction to the giant cusp. From the equations of motion for the
poles we get

T3 ∼ L ln(
L

a
) ∼ L ln

√
L ∼ L . (59)

The investigated domain of the system size was found to be

T1 ≫ T2, T3 (60)

Therefore full lifetime is

T = T1 + T2 + T3 ∼ ν + sL , (61)

wheres is a constant and

0 < s ≪ 1 . (62)

This result qualitatively and partly quantatively explains dependence (48). From
(48), (47), (45) we can see that in regime IIIdN

dt is saturated with the system sizeL.

3.4 The acceleration of the flame front due to noise

In this section we estimate the scaling exponents that characterize the velocity of the
flame front as a function of the system size. Our arguments in this section are even less
solid than the previous ones, but nevertheless we believe that we succeed to capture
some of the essential qualitative physics that underlies the interaction between noise
and instability and which results in the acceleration of theflame front.

To estimate the velocity of the flame front we need to write down an equation for
the mean of< dh/dt > given an arbitrary numberN of poles in the system. This
equation follows directly from (4):

〈

dh

dt

〉

=
1

L2

1

2π

∫ 2π

0

u2dθ . (63)

After substitution of (8) in (63) we get, using (11) and (12)

〈

dh

dt

〉

= 2ν

N
∑

k=1

dyk
dt

+ 2

(

νN

L
− ν2N2

L2

)

. (64)

The estimates of the second and third terms in this equation are straightforward. Writ-
ingN = N(L) + δN(L) and remembering thatN(L) ∼ L/ν andδN(L) ∼ N(L)/2
we find that these terms contributeO(1). The first term will contribute only when
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the current of poles is asymmetric. Since noise introduces poles at a finite value of
ymin, whereas the rejected poles stream towards infinity and disappear at boundary of
nonlinearity defined by position of highest pole

ymax ≈ 2 ln
[ 4L

π2ν

]

. (65)

, we have an asymmetry that contributes to the velocity of thefront. To estimate
the first term let us define

d(
∑ dyk

dt
) =

l+dl
∑

l

dyk
dt

(66)

where
∑l+dl

l
dyk

dt is sum over poles that are on the intervaly : [l, l + dl]. We can
write

d(
∑ dyk

dt
) = d(

∑ dyk
dt

)up − d(
∑ dyk

dt
)down (67)

Whered(
∑ dyk

dt )up flux of poles moving up andd(
∑ dyk

dt )down flux of poles mov-
ing down.

For these flux we can write

d(
∑ dyk

dt
)up, d(

∑ dyk
dt

)down ≤ dN

dt
dl (68)

So for the first term

0 ≤
N
∑

k=1

dyk
dt

= (69)

∫ ymax

ymin

d(
∑ dyk

dt )

dl
dl

=

∫ ymax

ymin

d(
∑ dyk

dt )up − d(
∑ dyk

dt )down

dl
dl

≤ dN

dt
(ymax − ymin)

≤ dN

dt
ymax

Because of slow(ln) dependence ofymax onL andν dN
dt term define oder of non-

linearity for first term. This term zero for symmetric current of poles and achieves
maximum for maximal asymmetric current of poles. Comparison v ∼ L0.42f0.02 and
dN
dt ∼ L0.8f0.03 confirm this calculation.
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4 summary and conclusions

The main two messages of this paper like the previous one are:(i) There is an im-
portant interaction between the instability of developingfronts and random noise; (ii)
This interaction and its implications can be understood qualitatively and sometimes
quantitatively using the description in terms of complex poles.

The pole description is natural in this context firstly because it provides an exact
(and effective) representation of the steady state withoutnoise. Once one succeeds to
describe also theperturbations about this steady state in terms of poles, one achieves
a particularly transparent language for the study of the interplay between noise and
instability. This language also allows us to describe in qualitative and semi-quantitative
terms the inverse cascade process of increasing typical lengths when the system relaxes
to the steady state from small, random initial conditions.

The main conceptual steps in this paper are as follows: firstly one realizes that the
steady state solution, which is characterized byN(L) poles aligned along the imag-
inary axis is marginally stable against noise in a periodic array of L values. For all
values ofL the steady state is nonlinearly unstable against noise. Themain and fore-
most effect of noise of a given amplitudef is to introduce an excess number of poles
δN(L, f) into the system. The existence of this excess number of polesis responsible
for the additional wrinkling of the flame front on top of the giant cusp, and for the
observed acceleration of the flame front. By considering thenoisy appearance of new
poles we rationalize the observed scaling laws as a functionof the noise amplitude and
the system size.

The “phase diagram” as a function ofL and f in this system consists of four
regimes (in contradiction with our previous results [6]). In the first one, discussed
in Section 3.3.1 , the noise is too small to have any effect on the giant cusp solution.
The second regime (very small excess number of poles ) can notbe observed because
of numerical noise and discussed only theoretically. In thethird regime the noise intro-
duces excess poles that serve to decorate the giant cusp withside cusps. In this regime
we find scaling laws for the velocity as a function ofL andf and we are reasonably
successful in understanding the scaling exponents. In the fourth regime the noise is
large enough to create small scale structures that are not neatly understood in terms of
individual poles. It appears from our numerics that in this regime the roughening of
the flame front gains a contribution from the the small scale structure in a way that is
reminiscent ofstable, noise driven growth models like the Kardar-Parisi-Zhang model.

One of our main motivations in this research was to understand the phenomena ob-
served in radial geometry with expanding flame fronts. A fullanalysis of this problem
cannot be presented here. We note however that many of the insights offered above
translate immediately to that problem. Indeed, in radial geometry the flame front ac-
celerates and cusps multiply and form a hierarchic structure as time progresses. Since
the radius (and the typical scale) increase in this system all the time, new poles will be
added to the system even by a vanishingly small noise. The marginal stability found
above holds also in this case, and the system will allow the introduction of excess poles
as a result of noise. The results discussed in Ref.[7] can be combined with the present
insights to provide a theory of radial growth. This theory was offered in Ref.[8].

We have had a serious open problem for this case [10], but thisproblem was solved
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successfully recently Karlin and Sivashinsky [12] , [13]. For a cylindrical case of the
flame front propagation problem at absence of noise (only numerical noise Ref.[26,
27, 28, 29, 30]) by Sivashinsky with help of numerical methods it was shown, that the
flame front is continuously accelerated. During all this account time it is not visible
any attributes of saturation. To increase time of the account is a difficult task. Hence,
absence or presence of velocity saturation in a cylindricalcase, as consequence of the
flame front motion equation it was a open problem before appearance of the papers
[12] , [13].

For the best understanding of dependence of flame front velocity as functions of its
radius in a cylindrical case similar dependence of flame front velocity on width of the
channel (in a flat case) also was analyzed by numerical methods. Growth of velocity is
also observed and at absence of noise (only numerical noise!) also any saturation of the
velocity it is not observed. Introduction obvious Gaussiannoise results to appearance
of a point of saturation and its removal from the origin of coordinates with decreasing
of noise amplitude, allowing extrapolating results on small numerical noise. (Fig.2)

Hence, introducing of Gaussian noise in numerical calculation also for a cylindrical
case can again results to appearance of a saturation point and will allow to investigate
its behavior as function of noise amplitude by extrapolating results on small numerical
noise. This investigation was really made and saturation was observed recently by
Karlin and Sivashinsky [12] , [13] for 1D, 2D and 3D cases.

Finally, the success of this approach in the case of flame propagation demonstrates
that Laplacian growth patterns can be dealt with using similar ideas. A problem of im-
mediate interest is Laplacian growth in channels, in which afinger steady-state solution
is known to exist. It is documented that the stability of sucha finger solution to noise
decreases rapidly with increasing the channel width. In addition, it is understood that
noise brings about additional geometric features on top of the finger. There are enough
similarities here to indicate that a careful analysis of theanalytic theory may shed as
much light on that problem as on the present one.
AcknowledgmentsThe authors are grateful to the anonymous referee for various sug-
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caccia for his supervision and many fruitful ideas result increating the paper. We also
would like to thank Barak Galanti for all necessary numerical calculations executed for
this paper.

References

[1] Liberman M.A., Ivanov M.F., Peil O.E., Valiev D.M., Eriksson L.-E. Self-
acceleration and fractal structure of outward freely propagating flames // Physics
of Fluids. - 2004. - V. 16, N 7. - PP. 2476-2482

[2] Gostintsev Yu.A., Istratov A.G., Shulenin Yu.V. Self-similar propagation of a free
turbulent flame in mixed gas mixtures // Combust. Expl. ShockWaves. - 1988.-
V. 24, N 5. - PP. 63-70

18



[3] Wu F., Jomaas G., Law C.K. On Self-Acceleration of Cellular Spherical
Flames // Fall Technical Meeting of the Eastern States Section of the Com-
bustion Institute Hosted by the University of Connecticut,Storrs, CT - 2011. -
http://lcg.princeton.edu/publications/conference-publications/wu-on-self-acceleration-of-cellular-spherical-flames.aspx

[4] Sivashinsky G.I. Nonlinear analysis of hydrodynamics instability in laminar ames
I. Deriva- tions fo basic equations Nonlinear analysis of hydrodynamics instabil-
ity in laminar ames I. Deriva- tions fo basic equations // Acta Astronautica - 1977.
- V. 4 - PP. 1177-1206

[5] Filyand L., Sivashinsky G.I., Frankel M.L. On self-acceleration of outward prop-
agating wrinkled flames // Physica D - 1994. - V. 72 - PP. 110-118

[6] Olami Z., Glanti B., Kupervasser O., Procacccia I. Random Noise and Pole-
Dynamics in Unstable Front Propagation // Phys. Rev. E. - 1997. - V. 55, N 3
- PP. 2649-2663

[7] Kupervasser O., Olami Z., Procacccia I. Geometry of Developing Flame Fronts:
Analysis with Pole Decomposition // Phys. Rev. Lett. - 1996.- V. 76 - PP. 146-149

[8] B. Glanti, Kupervasser O., Olami Z., Procacccia I. Dynamics and Wrinkling of
Radially Propagation Fronts Inferred from Scaling Law in Channel Geometries //
Phys. Rev. Lett. - 1998. - V. 80, N 11 - PP. 2477-2480

[9] Kupervasser O., Olami Z., Procacccia I. Stability Analysis of Flame Fronts: Dy-
namical Systems Approach in the Complex Plane // Phys. Rev. E- 1999. - V. 59,
N 3 - PP. 2587-2593

[10] Kupervasser O. Pole solutions in the case of problems offlame front propagation
and Saffman-Teylor ”finger” formation without surface tension: open problems
and possible ways of their solutions - 2003. - arXiv:nlin/0306038

[11] Kupervasser O. Random Noise and Pole-Dynamics in Unstable Front Propagation
- 2003. - arXiv:nlin/0302017

[12] Karlin V., Sivashinsky G. The Rate of Expansion of Spherical Flames // Combus-
tion Theory and Modelling - 2006. - V. 10, N 4 - PP. 625-637

[13] Karlin V., Sivashinsky G. Asymptotic modelling of self-acceleration of spherical
flames // Proceedings of the Combustion Institute - 2007. - V.31, N 1 - PP. 1023-
1030

[14] Lee Y.C., Chen H.H. Nonlinear dynamical models of plasma turbulence // Phys.
Scr. (Sweden) - 1982.- T2A - PP. 41-47

[15] O. Thual, U.Frisch and M. Henon Application of pole decomposition to an equa-
tion governing the dynamics of wrinkled flame fronts // J. Physique - 1985. - V.
46, PP. 1485-1494

[16] Joulin G. On the hydrodynamic stability of curved premixed flames // J. Phys.
France - 1989. - V. 50 - PP. 10691082

19

http://lcg.princeton.edu/publications/conference-publications/wu-on-self-acceleration-of-cellular-spherical-flames.aspx
http://arxiv.org/abs/nlin/0306038
http://arxiv.org/abs/nlin/0302017


[17] Joulin G. On the Zhdanov-Trubnikov equation for premixed flame instability // J.
Exp.Theor. Phys. -1990.-V. 100, Is.2(8) - PP. 428-432

[18] Minaev S.S. Set of steady solutions describing a cellular flame in the case of
hydrodynamic instability // Combustion, Explosion, and Shock Waves - 1992. -
V. 28, N 1 - PP. 3539

[19] Minaev S.S., Pirogov E.A., Sharypov O.V. A Nonlinear model of hydrodynamic
instability of outward propagating flame // Combustion, Explosion, and Shock
Waves - 1996. - V. 32, N 5 - PP. 481-488

[20] Fursenko R.V., Pan K.L., Minaev S.S. Noise influence on pole solutions of the
Sivashinsky equation for planar and outward propagating flames // PHYS. REV.E
- 2008. - V. 78, N 5 - P. 056301

[21] Pan K.L., Fursenko R.V. Characteristics of cylindrical flame acceleration in out-
ward expansion // PHYSICS OF FLUIDS - 2008. - V. 20, N 9 - P. 094107

[22] Fursenko R.V., Minaev S.S., Pan K.L. Hydrodynamic Instability of Inward-
Propagating Flames // Combustion, Explosion, and Shock Waves - 2009. - V.
45, N 5, PP. 511-517

[23] Gutman S., Sivashinsky G.I. The cellular nature of hydrodynamic instability//
Physica D - 1990. - V. 43 PP. 129-139

[24] Risken H. The Fokker -Planck Equation. - Berlin: Springer, 1984 (P.124
Eq.(5.111))

[25] Cambray P., Joulin G. Length-Scales of Wrinkling of Weakly-Forced, Unstable
Premixed Flames // Combust. Sci. Tech. - 1994. - V. 97 PP. 405428

[26] Rahibe M., Aubry N., Sivashinsky G.I., Lima R. Formation of wrinkles in out-
wardly propagating flames // Phys. Rev. E - 1995. - V. 52, N 4 - PP. 36753686

[27] Rahibe M., Aubry N., Sivashinsky G.I. Stability of polesolution for planar prop-
agating flames // Phys. Rev. E - 1996. - V. 54, N 5 - PP. 4958-4972

[28] Rahibe M., Aubry N., Sivashinsky G.I. Instability of pole solutions for planar
propagating flames in sufficiently large domains // Combust.Theory Modelling -
1998. - V. 2, N 1 - PP. 19 41

[29] Ashurst Wm.T. Darrieus-Landau instability, growing cycloids and expanding
flame acceleration // Combust. Theory Modelling - 1997. - V. 1- PP. 405428

[30] Kortsarts Y., Brailovsky I., Sivashinsky G.I. On Hydrodynamic Instability of
Stretched Flames // Combust. Sci. Tech. - 1997. - V. 123 - PP. 207225

20



Figures Legends

Fig.1: The dependence of the average velocityv on the noisef0.5 for L=10, 40, 80.

Fig.2: The dependence of the average velocityv on the system sizeL for f0.5 =
0, 2.7 ∗ 10−6, 2.7 ∗ 10−5, 2.7 ∗ 10−4, 2.7 ∗ 10−3, 2.7 ∗ 10−2, 2.7 ∗ 10−1, 0.5, 1.3, 2.7 .

Fig.3: The dependence of the cusps positions on time.L = 80 ν = 0.1 f = 9 ∗ 10−6

Fig.4: The first odd eigenfunction obtained from traditional stability analysis.
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