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The Geometry of Developing Flame Fronts: Analysis with Pole Decomposition
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The roughening of expanding flame fronts by the accre-
tion of cusp-like singularities is a fascinating example of the
interplay between instability, noise and nonlinear dynamics
that is reminiscent of self-fractalization in Laplacian growth
patterns. The nonlinear integro-differential equation that de-
scribes the dynamics of expanding flame fronts is amenable to
analytic investigations using pole decomposition. This pow-
erful technique allows the development of a satisfactory un-
derstanding of the qualitative and some quantitative aspects
of the complex geometry that develops in expanding flame
fronts.

PACS numbers 47.27.Gs, 47.27.Jv, 05.40.+j

The study of growing fronts in nonlinear physics [1]
offers fascinating examples of spontaneous generation of
fractal geometry [2,3]. Advancing fronts rarely remain
flat; usually they form either fractal objects with con-
torted and ramified appearance, like Laplacian growth
patterns and diffusion limited agregates (DLA) [4], or
they remain graphs, but they “roughen” in the sense
of producing self-affine fractals whose “width” diverges
with the linear scale of the system with some character-
istic exponent. The study of interface growth where the
roughening is caused by the noisy environment, with ei-
ther annealed or quenched noise, was a subject of active
research in recent years [5,6]. These studies met consider-
able success and there is significant analytic understand-
ing of the nature of the universality classes that can be
expected. The study of interface roughening in system
in which the flat surface is inherently unstable is less de-
veloped. One interesting example that attracted atten-
tion is the Kuramoto-Sivashinsky equation [7,8] which
is known to roughen in 1+1 dimensions but is claimed
not to roughen in higher dimensions [9]. Another out-
standing example is Laplacian growth patterns [10]. This
Letter is motivated by a new example of the dynamics
of outward propagating flames whose front wrinkles and
fractalizes [11]. We will see that this problem has many
features that closely resemble Laplacian growth, includ-
ing the existence of a single finger in channel growth ver-
sus tip splitting in cylindrical outward growth, extreme
sensitivity to noise, etc. In the case of flame fronts the
equation of motion is amenable to analytic solutions and
as a result we can understand some of these issues.

The physical problem that motivates this analysis is

that of pre-mixed flames which exist as self-sustaining
fronts of exothermic chemical reactions in gaseous com-
bustion. It had been known for some time that such
flames are intrinsically unstable [12]. It was reported
that such flames develop characteristic structures which
includes cusps, and that under usual experimental con-
ditions the flame front accelerates as time goes on [13].
In recent work Filyand et al. [11] proposed an equation
of motion that is motivated by the physics and seems to
capture a number of the essential features of the obser-
vations. The equation is written in cylindrical geometry
and is for R(θ, t) which is the modulus of the radius vec-
tor on the flame front:

∂R

∂t
=

Ub

2R0
2(t)

(

∂R

∂θ

)2

+
DM

R0
2(t)

∂2R

∂θ2
(1)

+
γUb

2R0(t)
I(R) + Ub .

Here 0< θ < 2π is an angle and the constants Ub, DM

and γ are the front velocity for an ideal cylindrical front,
the Markstein diffusivity and the thermal expansion co-
efficient respectively. R0(t) is the mean radius of the
propagating flame:

R0(t) =
1

2π

∫ 2π

0

R(θ, t)dθ . (2)

The functional I(R) is best represented in terms of its
Fourier decomposition. Its Fourier component is |k|Rk

where Rk is the Fourier component of R.
Numerical simulations of the type reported in ref. [11]

are presented in Fig.1. The flame front R(θ, t) is shown
at four equal time intervals. The two most prominent
features of these simulations are the wrinkled multi-cusp
appearance of the fronts and its acceleration as time pro-
gresses. One observes the phenomenon of tip splitting
in which new cusps are added to the growing fronts be-
tween existing cusps. Both experiments and simulations
indicate that for large times R0 grows as a power in time

R0(t) = (const + t)β , (3)

with β > 1, (of the order of 1.5) and that the width of
the interface W grows with R0 as

W (t) ∼ R0(t)
χ , (4)
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with χ < 1 (of the order of 2/3). The understanding
of these two features and the derivation of the scaling
relation between β and χ are the main aims of this Letter.

Equation (2) can be written as a one-parameter equa-
tion by rescaling R and t according to r ≡ RUb/DM ,
τ ≡ tU2

b /DM . Computing the derivative of Eq.(2) with
respect to θ and substituting the dimensionless variables
one obtains:

∂u

∂τ
=

u

r2
0

∂u

∂θ
+

1

r2
0

∂2u

∂θ2
+

γ

2r0
I{u} . (5)

where u ≡ ∂r
∂θ

. To complete this equation we need a
second one for r0(t), which is obtained by averaging (2)
over the angles and rescaling as above. The result is

dr0

dτ
=

1

2r2
0

1

2π

∫ 2π

0

u2dθ + 1 . (6)

These two equations are the basis for further analysis
Following [14–19] we expand now the solutions u(θ, τ)

in poles whose position zj(τ) ≡ xj(τ) + iyj(τ) in the
complex plane is time dependent:

u(θ, τ) =
N

∑

j=1

cot

[

θ − zj(τ)

2

]

+ c.c. (7)

=

N
∑

j=1

2 sin[θ − xj(τ)]

cosh[yj(τ)] − cos[θ − xj(τ)]
,

r(θ, τ) = 2

N
∑

j=1

ln
[

cosh(yj(τ)) − cos(θ − xj(τ))
]

+ C(τ) .

(8)

In (8) C(τ) is a function of time. The function (8) is a
superposition of quasi-cusps (i.e. cusps that are rounded
at the tip). The real part of the pole position (i.e. xj)
describes the angle coordinate of the maximum of the
quasi-cusp, and the imaginary part of the pole position
(i.e yj) is related the height of the quasi-cusp. As yj de-
creases (increases) the height of the cusp increases (de-
creases). The physical motivation for this representation
of the solutions should be evident from Fig.1.

The main advantage of this representation is that the
propagation and wrinkling of the front can be described
now via the dynamics of the poles and of r0(t). Substitut-
ing (7) in (5) we derive the following ordinary differential
equations for the positions of the poles:

−r2
0

dzj

dτ
=

2N
∑

k=1,k 6=j

cot

(

zj − zk

2

)

+ i
γr0

2
sign[Im(zj)] .

(9)

After substitution of (7) in (6) we get, using (9) the
ordinary differential equation for r0,

dr0

dτ
= 2

N
∑

k=1

dyk

dτ
+ 2

(

γ

2

N

r0
− N2

r2
0

)

+ 1 . (10)

In the case of flame fronts propagating in channels of
width L ref. [15] presented a rather complete analysis
of the available stationary solutions. Some aspects of
this analysis are important also for our case of cylindrical
geometry, and we therefore briefly summarize the main
results of [15]. These are: (i) In noiseless conditions the
total number of poles NT is conserved by the dynamics.
This is also the case in the present problem. (ii) There is
only one stable stationary solution which is geometrically
represented by a giant cusp (or equivalently one finger)
and analytically by N(L) poles which are aligned on one
line parallel to the imaginary axis. (iii) The reason for
this behaviour is the existence of an attraction between
the poles along the real line, and the resulting dynamics
merges all the x positions. The y positions are distinct,
and the poles are sitting above each others in positions
yj−1 < yj < yj+1 with the maximal yN(L). (iv) If one
adds an additional pole to such a solution, this pole (or
another) will be pushed to infinity along the imaginary
axis. If the system has less than N(L) poles it is unstable
to the addition of poles, and any noise will drive the
system towards this unique state. The number N(L) is

N(L) =
[1

2

(

L

2πν
+ 1

)

]

, (11)

where
[

. . .
]

is the integer part, and in the (different)

parametrization of ref. [15] ν is the coefficient of the vis-
cous term. (v) The height of the cusp is proportional to
L. we will refer to the solution with these properties as
the Thual-Frisch-Henon (TFH)-cusp solution.

In our problem the outward growth introduces impor-
tant modifications to the channel results. The number of
poles in a stable configuration is proportional here to the
radius r0 instead of L, but the former grows in time. The
system becomes therefore unstable to the addition of new
poles. If there is noise in the system that can generate
new poles, they will not be pushed toward infinite y. It
is important to stress that any infinitesimal noise (either
numerical or experimental) is sufficient to generate new
poles. These new poles do not necessarily merge their
x-positions with existing cusps. Even though there is at-
traction along the real axis as in the channel case, there is
a stretching of the distance between the poles due to the
radial growth. This may counterbalance the attraction.
Our first new idea is that these two opposing tendencies
define a typical scale denoted as L. if we have a cusp that
is made from the x-merging of Nc poles on the line x = xc

and we want to know whether a x-nearby pole with real
coordinate x1 will merge with this large cusp, the an-
swer depends on the distance D = r0|xc − x1|. There is
a length L(Nc, r0) such that if D > L(Nc, r0) then the
single cusp will never merge with the larger cusp. In the
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opposite limit the single cusp will move towards the large
cusp until their x- position merges and the large cusp will
have Nc + 1 poles.

This finding stems directly from the equations of mo-
tion of the Nc x-merged poles and the single pole at x1.
First note that from Eq.3 (which is not explained yet)
it follows that asymptotically r0(τ) = (a + τ)β where
r0(0) = aβ . Next start from 9 and write equations for
the angular distance x = x1 − xc. It follows that for any
configuration yj along the imaginary axis

dx

dτ
≤ −2Nc sin x[1 − cosx]−1

(a + τ)2β
= −2Nc cot(x

2 )

(a + τ)2β
. (12)

For small x we get

dx

dτ
≤ − 4Nc

x(a + τ)2β
. (13)

The solution of this equation is

x(0)2 − x(τ)2 ≥ 8Nc

2β − 1
(a1−2β − (a + τ)1−2β) . (14)

To find L we set x(∞) > 0 from which we find that the
angular distance will remain finite as long as

x(0)2 >
8Nc

2β − 1
a1−2β . (15)

Since r0 ∼ aβ we find the threshold angle x∗

x∗ ∼
√

N cr
(1−2β)

2β

0 , (16)

above which there is no merging between the giant
cusp and the isolated pole. To find the actual distance
L(Nc, r0) we multiply the angular distance by r0 and find

L(Nc, r0) ≡ r0x
∗ ∼

√

Ncr
1
2β

0 . (17)

To understand the geometric meaning of this result we
recall the features of the TFH cusp solution. Having a
typical length L the number of poles in the cusp is linear
in L. Similarly, if we have in this problem two cusps a
distance 2L apart, the number Nc in each of them will
be of the order of L. From (17) it follows that

L ∼ r
1
β

0 . (18)

For β > 1 the circumference grows faster than L, and
therefore at some points in time poles that appear be-
tween two large cusps would not be attracted toward
either, and new cusps will appear. We will show later
that the most unstable positions to the appearance of
new cusps are precisely the midpoints between existing
cusps. This is the mechanism for the addition of cusps
in analogy with tip splitting in Laplacian growth.

We can now estimate the width of the flame front as
the height of the largest cusps. Since this height is pro-
portional to L (cf. property (v) of the TFH solution),
Eq.(18) and Eq.(4) lead to the scaling relation

χ = 1/β . (19)

This scaling law is expected to hold all the way to β = 1
for which the flame front does not accelerate and the size
of the cusps becomes proportional to r0.

Next we shed light on phenomenon of tip splitting that
here is seen as the addition of new cusps roughly in be-
tween existing ones. We mentioned the instability toward
the addition of new poles. We argue now that the tip be-
tween the cusps is most sensitive to pole creation. This
can be shown in both channel and radial geometry. For
example consider a TFH-giant cusp solution in which all
the poles are aligned (without loss of generality) on the
x = 0 line. Add a new pole in the complex position
(xa, ya) to the existing N(L) poles, and study its fate. It
can be shown that in the limit ya → ∞ (which is the limit
of a vanishing perturbation of the solution) the equation
of motion is

dya

dτ
=

2πν

L
(2N(L) + 1) − 1 ya → ∞ . (20)

Since N(L) satisfies (11) this equation can be rewritten
as

dya

dτ
=

4πν

L
(1 − α) ya → ∞ , (21)

where α = (L/(2πν) + 1)/2 − N(L). Obviously α ≤ 1
and it is precisely 1 only when L is L = (2n + 1)2πν.
Next it can be shown that for ya much larger than yN(L)

but not infinite the following is true:

dya

dτ
> lim

ya→∞

dya

dτ
xa = 0 (22)

dya

dτ
< lim

ya→∞

dya

dτ
xa = π (23)

We learn from these results that there exist values of
L for which a pole that is added at infinity will have
marginal attraction (dya/dt = 0). Similar understand-
ing can be obtained from a standard stability analysis
without using pole decomposition. Perturbing a TFH-
cusp solution we find linear equations whose eigenvalues
λi can be obtained by standard numerical techniques.
Fig.2 presents Re(λi) as a function of systems size, and
shows very clearly that (i) all Re(λi) are non-positive.
(ii) at the isolated values of L for which L = (2n+1)2πν
Re(λ1) and Re(λ2) become zero (note that due to the log-
arithmic scale the zero is not evident) (iii) There exists
a general tendency of all Re(λi) to approach zero from
below as L increases. This indicates a growing sensitivity
to noise when the system size increases. (iv) There exists
a Goldsone mode λ0 = 0 due to translational invariance.
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The upshot of this discussion is that finite perturba-
tions (i.e. poles at finite ya) will grow if the x position of
the pole is sufficiently near the tip. The position x = π
(the tip of the finger) is the most unstable one. In the
channel geometry this means that noise results in the
appearance of new cusps at the tip of the fingers, but
due to the attraction to the giant cusp they move toward
x = 0 and disappear in the giant cusp. In fact, one sees
in numerical simulations a train of small cusps that move
toward the giant cusp. Analysis shows that at the same
time the furthest pole at yN(L) is pushed towards infinity.
Also in cylindrical geometry the most sensitive position
to the appearance of new cusps is right between two ex-
isting cusps independently if the system is marginal (the
total number of poles fits the radius) or unstable (total
number of poles is too small at a given radius). Whether
or not the addition of a new pole results in tip splitting
depends on their x position. When the distance from
existing cusps is larger than L the new poles that are
generated by noise will remain near the tip between the
two cusps and will cause tip splitting.

Lastly, we note that without the noisy generation of
new poles acceleration is impossible. This is seen di-
rectly from Eq.(10) in which all the terms on the RHS
but unity go to zero with r0 → ∞, and the velocity sat-
urates. We need the noisy appearance of new poles to
achieve acceleration. The precise connection between the
noise amplitude, system size and acceleration that leads
to the computation of the exponent β is beyond the scope
of this letter and will be discussed in a forthcoming pub-
lication.
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FIG. 1. Simulations of the outward propagating flame
front. Note that deep cusps do not disappear and that new
deep cusps appear when the rounded tips split.
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FIG. 2. Successive eigenvalues of the stability matrix of the
TFH-giant cusp solution as a function of the system size L.
The leading eigenvalue touches zero periodically in L. All the
eigenvalues tend to zero when L → ∞ as L

−2.
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